当前位置: 首页 > 知识库问答 >
问题:

如何打印混淆矩阵的标签和列名?

狄宇
2023-03-14

我得到了混淆矩阵,但是因为我的实际数据集有很多分类类别,所以很难理解。

范例-

>>> from sklearn.metrics import confusion_matrix
>>> y_test
['a', 'a', 'b', 'c', 'd', 'd', 'e', 'a', 'c']
>>> y_pred
['b', 'a', 'b', 'c', 'a', 'd', 'e', 'a', 'c']
>>> 
>>> 
>>> confusion_matrix(y_test, y_pred)
array([[2, 1, 0, 0, 0],
       [0, 1, 0, 0, 0],
       [0, 0, 2, 0, 0],
       [1, 0, 0, 1, 0],
       [0, 0, 0, 0, 1]], dtype=int64)

但是如何打印标签/列名以便更好地理解呢?

我甚至试过这个-

>>> pd.factorize(y_test)
(array([0, 0, 1, 2, 3, 3, 4, 0, 2], dtype=int64), array(['a', 'b', 'c', 'd', 'e'], dtype=object))
>>> pd.factorize(y_pred)
(array([0, 1, 0, 2, 1, 3, 4, 1, 2], dtype=int64), array(['b', 'a', 'c', 'd', 'e'], dtype=object))

需要帮忙吗?

共有1个答案

董琦
2023-03-14

试着这样做:

from sklearn.metrics import confusion_matrix
import pandas as pd
import numpy as np
y_test = ['a', 'a', 'b', 'c', 'd', 'd', 'e', 'a', 'c']
y_pred = ['b', 'a', 'b', 'c', 'a', 'd', 'e', 'a', 'c']


labels = np.unique(y_test)
a =  confusion_matrix(y_test, y_pred, labels=labels)

pd.DataFrame(a, index=labels, columns=labels)

输出:

   a  b  c  d  e
a  2  1  0  0  0
b  0  1  0  0  0
c  0  0  2  0  0
d  1  0  0  1  0
e  0  0  0  0  1
 类似资料:
  • 我正在对实际数据和来自分类器的预测数据进行多标签分类。实际数据包括三类(c1、c2和c3),同样,预测数据也包括三类(c1、c2和c3)。数据如下 在多标签分类中,文档可能属于多个类别。在上述数据中,1表示文档属于特定类,0表示文档不属于特定类。 第一行Actual\u数据表示文档属于c1类和c2类,不属于c3类。类似地,第一行predicted\u数据表示文档属于类别c1、c2和c3。 最初我使

  • 我试图弄清楚如何使用神经网络为多标签分类任务生成混淆矩阵。我之前设法使用函数“交集”计算准确性,因为对此我不关心任何排序。 然而,为了计算混淆矩阵,我确实关心预测/标签的索引顺序。由于标签的值始终相同(

  • 我正在y_test并y_pred混淆矩阵。我的数据用于多标签分类,因此行值是一种热编码。 我的数据有30个标签,但在输入混淆矩阵后,输出只有11行和列,这让我很困惑。我想我应该有一辆30X30的。 它们的格式是numpy数组。(y\u test和y\u pred是我使用dataframe.values将其转换为numpy数组的数据帧) y\U测试。形状 y_test y\u预测。形状 y\u预测

  • 我正在使用分类器的多类多标签输出。类的总数为14,实例可以关联多个类。例如: 我现在制作混淆矩阵的方式: 输出如下: 现在,我不确定sklearn的混淆矩阵是否能够处理多标签多类数据。谁能帮我一下吗?

  • 我需要计算表示为多个热向量的标签和预测的混淆矩阵。sklearn似乎不支持这种情况。 这是我所拥有的一个例子。假设有三个类,和;目标/标签为: 因此,我们有标签矩阵: 预测是: 预测矩阵为: 我希望输出是一个混淆矩阵,大致如下所示: 我使用来估计分类精度。然而,尽管正在为此类标签的准确性而工作,但混淆矩阵不支持上述场景。是否有任何替代? 另一个问题似乎给出了三个混淆矩阵,这不是我要寻找的情况。

  • 假设我有一个具有n个级别的因子变量y,我有预测和实际结果。如何构造混淆矩阵? 对于n=2的情况,这个问题已经得到了回答。看见 R:如何为预测模型制作混淆矩阵? 我试过的 这就是我能走多远 现在这必须以矩阵的形式呈现。 出身背景 混淆矩阵具有水平标签“实际类别”和垂直标签“预测类别”。矩阵元素的计数如下所示: 元素(1,1)=实际类的计数数为A,预测类的计数数为A 元素(1,2)=实际类别为A,预测