如何使用Spark-Scala连接日期和时间列(两个字符串)
+---+-------------------+-----+
| ID| Date |Time
+---+------------------ +-----+
| G|2014.01.14 00:00:00| 1:00
+---+-------------------+------
"2014.01.14 1:00"
您可以使用:
result.withColumn("Date && Time", concat(col("Date"), lit(""), (col("Time")) ));
试试这个,
result.withColumn("Date && Time", concat(regexp_replace(col("date"),"00:00:00",""), lit(""), (col("time"))))
我想过滤掉具有“c2”列前3个字符的记录,无论是“MSL”还是“HCP”。 所以输出应该如下所示。 有谁能帮忙吗? 我知道df。过滤器($c2.rlike(“MSL”))--用于选择记录,但如何排除记录? 版本:Spark 1.6.2 Scala:2.10
我正在研究建立一个JDBC Spark连接,以便从r/Python使用。我知道和都是可用的,但它们似乎更适合交互式分析,特别是因为它们为用户保留了集群资源。我在考虑一些更类似于Tableau ODBC Spark connection的东西--一些更轻量级的东西(据我所知),用于支持简单的随机访问。虽然这似乎是可能的,而且有一些文档,但(对我来说)JDBC驱动程序的需求是什么并不清楚。 既然Hiv
我正在尝试使用Apache Spark,以便将具有多个连接和子选择的(大型)SQL查询的结果加载到来自Spark的DataFrame中,如从SQL查询创建Spark Dataframe中所述。 不幸的是,我这样做的尝试导致了拼花错误: 线程“main”组织中出现异常。阿帕奇。火花sql。AnalysisException:无法推断拼花地板的架构。必须手动指定。 我从谷歌看到的信息表明,当数据帧为空
在PySpark中或者至少在Scala中,Apache Spark中是否有与Pandas Melt函数等价的函数? 到目前为止,我一直在用Python运行一个示例数据集,现在我想对整个数据集使用Spark。
[新加入Spark]语言-Scala 根据文档,RangePartitioner对元素进行排序并将其划分为块,然后将块分发到不同的机器。下面的例子说明了它是如何工作的。 假设我们有一个数据框,有两列,一列(比如“a”)的连续值从1到1000。还有另一个数据帧具有相同的模式,但对应的列只有4个值30、250、500、900。(可以是任意值,从1到1000中随机选择) 如果我使用RangePartit
我想将包含字符串记录的RDD转换为Spark数据帧,如下所示。 模式行不在同一个中,而是在另一个变量中: 所以现在我的问题是,我如何使用上面两个,在Spark中创建一个数据帧?我使用的是Spark 2.2版。 我确实搜索并看到了一篇帖子:我可以使用spack-csv将表示为字符串的CSV读取到Apache Spark中吗?然而,这并不是我所需要的,我也无法找到一种方法来修改这段代码以在我的情况下工