当前位置: 首页 > 知识库问答 >
问题:

火花流调优每个批处理大小不工作的记录数?

史弘博
2023-03-14
  • 创建了具有3个分区的主题
  • spark.streaming.kafka.MaxRatePerPartition=60000
  • spark.streaming.backpressure.enabled=true
  • 创建StreamingContext时将批处理持续时间设置为10秒
  • 以纱线模式运行,有2个执行程序(3个分区共4个内核)

现在我如何测试它是否起作用。

我有一个制作人,一次发送60000条消息到这个主题。当我检查spark UI时,我得到以下信息:

 batch time | Input size | processing time
 10:54:30   | 17610      | 5s
 10:54:20   | 32790      | 8s
 10:54:10   | 9600       | 3s
spark.app.id  = application_1551747423133_0677

spark.app.name = KafkaCallDEV

spark.driver.cores = 2

spark.driver.extraJavaOptions   = -XX:+UseG1GC -XX:ConcGCThreads=2
-XX:InitiatingHeapOccupancyPercent=35 -Dlog4j.configuration=log4j.properties -verbose:gc

spark.driver.memory = 3g

spark.driver.port   = 33917

spark.executor.cores = 2

spark.executor.extraJavaOptions = -XX:+UseG1GC -XX:ConcGCThreads=2
-XX:InitiatingHeapOccupancyPercent=35 -Dlog4j.configuration=log4j.properties -verbose:gc

spark.executor.id   = driver

spark.executor.instances    = 2

spark.executor.memory   = 2g

spark.master    = yarn

spark.scheduler.mode    = FIFO

spark.streaming.backpressure.enabled    = true

spark.streaming.kafka.maxRatePerPartition = 60000

spark.submit.deployMode = cluster

spark.ui.filters    = org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter

spark.ui.port = 0

spark.yarn.app.container.log.dir = /data0/yarn/container-logs/application_1551747423133_0677/container_1551747423133_0677_01_000002 
logger.info(sparkSession.sparkContext.getConf.getAll.mkString("\n"))
(spark.executor.extraJavaOptions,-XX:+UseG1GC -XX:ConcGCThreads=2

-XX:InitiatingHeapOccupancyPercent=35 -Dlog4j.configuration=log4j.properties -verbose:gc) (spark.yarn.app.id,application_1551747423133_0681)

(spark.submit.deployMode,cluster)

(spark.streaming.backpressure.enabled,true)

(spark.yarn.credentials.renewalTime,1562764821939ms)

(spark.ui.filters,org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter)

(spark.executor.memory,2g) 

(spark.yarn.credentials.updateTime,1562769141873ms)

(spark.driver.cores,2) 

(spark.executor.id,driver)

(spark.executor.cores,2)

(spark.master,yarn)

(spark.driver.memory,3g)

(spark.sql.warehouse.dir,/user/hive/warehouse) 

(spark.ui.port,0)

(spark.driver.extraJavaOptions,-XX:+UseG1GC -XX:ConcGCThreads=2
-XX:InitiatingHeapOccupancyPercent=35 -Dlog4j.configuration=log4j.properties -verbose:gc) 

(spark.executor.instances,2)

(spark.driver.port,37375)
    org.apache.kafka.clients.consumer.ConsumerConfig:178 - ConsumerConfig values: 
        metric.reporters = []
        metadata.max.age.ms = 300000
        partition.assignment.strategy = [org.apache.kafka.clients.consumer.RangeAssignor]
        reconnect.backoff.ms = 50
        sasl.kerberos.ticket.renew.window.factor = 0.8
        max.partition.fetch.bytes = 1048576
        ssl.keystore.type = JKS
        enable.auto.commit = false
        sasl.mechanism = GSSAPI
        interceptor.classes = null
        exclude.internal.topics = true
        ssl.truststore.password = null
        client.id = 
        ssl.endpoint.identification.algorithm = null
        max.poll.records = 60000
        check.crcs = true
        request.timeout.ms = 40000
        heartbeat.interval.ms = 3000
        auto.commit.interval.ms = 5000
        receive.buffer.bytes = 65536
        ssl.truststore.type = JKS
        ssl.truststore.location = null
        ssl.keystore.password = null
        fetch.min.bytes = 1
        send.buffer.bytes = 131072
        value.deserializer = class org.apache.kafka.common.serialization.StringDeserializer
        retry.backoff.ms = 100
        ssl.secure.random.implementation = null
        sasl.kerberos.kinit.cmd = /usr/bin/kinit
        sasl.kerberos.service.name = null
        sasl.kerberos.ticket.renew.jitter = 0.05
        ssl.trustmanager.algorithm = PKIX
        ssl.key.password = null
        fetch.max.wait.ms = 500
        sasl.kerberos.min.time.before.relogin = 60000
        connections.max.idle.ms = 540000
        session.timeout.ms = 30000
        metrics.num.samples = 2
        key.deserializer = class org.apache.kafka.common.serialization.StringDeserializer
        ssl.protocol = TLS
        ssl.provider = null
        ssl.enabled.protocols = [TLSv1.2, TLSv1.1, TLSv1]
        ssl.keystore.location = null
        ssl.cipher.suites = null
        security.protocol = PLAINTEXT
        ssl.keymanager.algorithm = SunX509
        metrics.sample.window.ms = 30000
        auto.offset.reset = latest

共有1个答案

通鸿风
2023-03-14

spark.streaming.kafka.MaxRatePerPartition=60000意味着

由属性spark.streaming.backpressure.enabled=true启用的此直接API读取每个Kafka分区的最大速率(以每秒消息为单位)

17610+32790+9600=60000即达到批量大小。

所以你就到此为止了....

为了更好地理解我的关于火花流反压的短文

结论:如果你启用了反压,不管你发送的信息的速率是多少。它将允许固定的消息速率

 类似资料:
  • 我正在运行一个spark作业,流上下文每60秒运行一次。问题是一批处理时间太长(由于计算和保存RDD和Parquet到云存储),一批无法在1分钟内完成。它结束于下一批继续进入并成为活动的(状态=处理)。过了一段时间,我有10个活动批处理,而第一个已经完成。结果,它明显减慢,没有一批能够完成。是否存在严格限制一次活动批处理的数量为1。 多谢了。

  • 当前设置:Spark流作业处理timeseries数据的Kafka主题。大约每秒就有不同传感器的新数据进来。另外,批处理间隔为1秒。通过,有状态数据被计算为一个新流。一旦这个有状态的数据穿过一个treshold,就会生成一个关于Kafka主题的事件。当该值后来降至treshhold以下时,再次触发该主题的事件。 问题:我该如何避免这种情况?最好不要切换框架。在我看来,我正在寻找一个真正的流式(一个

  • 我有一个用例,我必须以FIFO方式处理事件。这些是从机器生成的事件。每台机器每30秒生成一个事件。对于特定的机器,我们需要根据FIFO FASION对事件进行处理。 我们每天需要处理大约2.4亿个事件。对于如此大的规模,我们需要使用Kafka+火花流 从Kafka文档中,我了解到我们可以使用消息的关键字段将消息路由到特定的主题分区。这确保我可以使用机器id作为密钥,并确保来自特定机器的所有消息都进

  • 由于,我检查了一个spark作业的输出拼花文件,该作业总是会发出声音。我在Cloudera 5.13.1上使用了 我注意到拼花地板排的大小是不均匀的。第一排和最后一排的人很多。剩下的真的很小。。。 拼花地板工具的缩短输出,: 这是已知的臭虫吗?如何在Spark中设置拼花地板块大小(行组大小)? 编辑: Spark应用程序的作用是:它读取一个大的AVRO文件,然后通过两个分区键(使用

  • 我从某个时候起就被这个问题困扰着。 我使用的是spring batch 3.0.7 问题是在ItemWriter中的一个记录中出现org.springframework.dao.DataIntegrityViolationExcue的情况下,组块(组块大小=10)中的其余记录也不会插入到数据库中,即使在提供了skipPolicy之后(对于所有异常返回true)。 我的理解是,如果在提交整个大块时出

  • 我正在使用spring批处理使用RepositoryItemReader从postgresql DB读取记录,然后将其写入主题。我看到大约有100万条记录需要处理,但它并没有处理所有的记录。我已经将reader的pageSize设置为10,000并且与提交间隔(块大小)相同