当前位置: 首页 > 知识库问答 >
问题:

Gekko:MINLP-找不到Error options.json文件

年业
2023-03-14

我试图解决一个MINLP问题,首先使用IPOPT解算器得到初始解,然后使用APOPT得到混合整数解。但是,调用APOPT解算器时出现以下错误:

错误:异常:访问违规在file./f90/cqp. f90 Traceback的第359行:不可用,使用-ftrace=frame或-ftrace=all编译错误:未找到results.json。检查上面的其他错误详细信息Traceback(最近的最后一次调用):文件optimisation_stack.py,第244行,Optimise_G(t, ob, jofbus, q, qc, s, oa, k, l, T,G_previous, C, Y,G_previous,G_max,G_min)File"optimisation_stack.py,第134行,Optimise_Gsol=MINLP(sinit, A, B,A_eq,B_eq, LB, UB, t, ob, jofbus, q, qc, s, oa, k, l, T,G_previous, C, Y,G_previous)File"optimisation_stack.py",第215行,在MINLPm_APOPT. Solutions(disp=False)文件"C:\用户\Zineb\AppData\本地\程序\Python\Python37\lib\site-包\gekko\gekko.py",第2227行,在解决self.load_JSON()文件"C:\用户\Zineb\AppData\本地\程序\Python\Python37\lib\site-包\gekko\gk_post_solve.py",第13行,load_JSONf=open(os.path.join(_path,'options.json'))FileNotFoundError:[Errno 2]No this file or目录:'C:\用户\Zineb\AppData\本地\Temp\tmptdgafg1zgk_model1\options.json'

我的代码如下,我尽量简化它:

import numpy as np 
from gekko import GEKKO 

# Define matrices A,A_eq, and vectors b, b_eq for the optimization

def Optimise_G(t,ob, jofbuses, q, qc, s, oa, k, l, T, G_next, C, Y, G_previous, G_max, G_min):
    Mbig_1 = T*C
    Mbig_2 = C
    nb_phases = len(G_next)
    b_max = len(t)
    no_lanegroups = len(q)

    A_eq = np.zeros(((nb_phases+1)*b_max + 1, (3*nb_phases+3)*b_max+nb_phases))
    for i in range(nb_phases):
        A_eq[0][i] = 1

    #B_eq = np.zeros(((nb_phases+1)*b_max + 1, 1))
    B_eq = np.zeros((nb_phases+1)*b_max + 1)
    B_eq[0] = C - sum(Y[0:nb_phases])

    counter_eq = 0

    # G(i)=Ga(i,b)+Gb(i,b)+Gc(i,b)
    for b in range(b_max):
        for i in range(nb_phases):
            counter_eq = counter_eq + 1
            A_eq[counter_eq][i] = 1
            A_eq[counter_eq][nb_phases*(b+1)+ i] = -1
            A_eq[counter_eq][nb_phases*b_max + nb_phases*(b+1) + i] = -1
            A_eq[counter_eq][2*nb_phases*b_max + nb_phases*(b+1) + i] = -1


    # ya(b)+y(b)+y(c)=1
    for b in range(b_max):
        counter_eq = counter_eq + 1
        A_eq[counter_eq][3*nb_phases*b_max + nb_phases + b] = 1
        A_eq[counter_eq][(3*nb_phases+1)*b_max + nb_phases + b] = 1
        A_eq[counter_eq][(3*nb_phases+2)*b_max + nb_phases + b] = 1
        B_eq[counter_eq] = 1
    

    A = np.zeros((no_lanegroups + (2*3*nb_phases+4)*b_max, (3*nb_phases+3)*b_max+nb_phases))
    B = np.zeros(no_lanegroups + (2*3*nb_phases+4)*b_max)

    counter = -1

    # Sum Gi (i in Ij)>=Gj,min
    for j in range(no_lanegroups):
        counter = counter + 1
        for i in range(k[j], l[j]+1):
            A[counter][i-1] = -1
        B[counter] = -C*qc[j]/s[j]

    # ya(b)G_lb(i)<=Ga(i,b), yb(b)G_lb(i)<=Gb(i,b), yc(b)G_lb(i)<=Gc(i,b)
    for b in range(b_max): 
        for i in range(nb_phases):
            counter = counter + 1
            A[counter][nb_phases*(b+1)+i] = -1
            A[counter][3*nb_phases*b_max + nb_phases + b] = G_min[i]
            B[counter] = 0
        
            counter = counter + 1
            A[counter][nb_phases*b_max + nb_phases*(b+1) + i] = -1
            A[counter][(3*nb_phases+1)*b_max + nb_phases + b] = G_min[i]
            B[counter] = 0
        
            counter = counter + 1
            A[counter][2*nb_phases*b_max + nb_phases*(b+1) +i] = -1
            A[counter][(3*nb_phases+2)*b_max + nb_phases + b] = G_min[i]
            B[counter] = 0
        
    # ya(b)Gmax(i)>=Ga(i,b), yb(b)Gmax(i)>=Gb(i,b), yc(b)Gmax(i)>=Gc(i,b)
    for b in range(b_max):
        for i in range(nb_phases):
            counter = counter + 1
            A[counter][nb_phases*(b+1) +i] = 1
            A[counter][3*nb_phases*b_max + nb_phases + b] = -G_max[i]
            B[counter] = 0
        
            counter = counter + 1
            A[counter][nb_phases*b_max + nb_phases*(b+1) + i] = 1
            A[counter][(3*nb_phases+1)*b_max + nb_phases + b] = -G_max[i]
            B[counter] = 0
        
            counter = counter + 1
            A[counter][2*nb_phases*b_max + nb_phases*(b+1) +i] = 1
            A[counter][(3*nb_phases+2)*b_max + nb_phases + b] = -G_max[i]
            B[counter] = 0  
        
    # (1-yc(b))t(b)<=(T-1)C+sum(Gi(1:l(jofbuses(b))))+sum(Y(1:l(jofbuses(b))-1))
    for b in range(b_max):
        counter = counter + 1
        A[counter][0:l[jofbuses[b]-1]] = -np.ones((1,l[jofbuses[b]-1]))
        A[counter][(3*nb_phases+2)*b_max+nb_phases+b] = -t[b]
        B[counter] = -t[b] + (T-1)*C + sum(Y[0:l[jofbuses[b]-1]-1])

    # (T-1)C+sum(Gi(1:l(jofbuses(b))))+sum(Y(1:l(jofbuses(b))-1))<=yc(b)t(b)+(1-yc(b))Mbig_1
    for b in range(b_max):
        counter = counter + 1
        A[counter][0:l[jofbuses[b]-1]] = np.ones((1,l[jofbuses[b]-1]))
        A[counter][(3*nb_phases+2)*b_max+nb_phases+b] = -t[b] + Mbig_1
        B[counter] = Mbig_1 - (T-1)*C - sum(Y[0:l[jofbuses[b]-1]-1])


    # -Mbig_2(1-yb(b))<=db(b)=right-hand side of Equation (6)
    for b in range(b_max):
        counter = counter + 1
        constant = q[jofbuses[b]-1]/s[jofbuses[b]-1]*(t[b] - (T-1)*C + sum(G_previous[l[jofbuses[b]-1]:nb_phases]) + sum(Y[l[jofbuses[b]-1] -1:nb_phases]))+ (T-1)*C + sum(Y[0:k[jofbuses[b]-1]-1]) - t[b]  
        A[counter][0:k[jofbuses[b]-1]-1] = -np.ones((1,k[jofbuses[b]-1]-1))
        A[counter][(3*nb_phases+1)*b_max + nb_phases + b] = Mbig_2
        B[counter] = constant + Mbig_2


    # db(b)<=Mbig_2 yb(b)
    for b in range(b_max):
        counter = counter + 1
        constant = q[jofbuses[b]-1]/s[jofbuses[b]-1]*(t[b] - (T-1)*C +sum(G_previous[l[jofbuses[b]-1]:nb_phases]) + sum(Y[l[jofbuses[b]-1] -1:nb_phases]))+ (T-1)*C + sum(Y[0:k[jofbuses[b]-1]-1]) - t[b]  
        A[counter][0:k[jofbuses[b]-1]-1] = np.ones((1,k[jofbuses[b]-1]-1))
        A[counter][(3*nb_phases+1)*b_max + nb_phases + b] = -Mbig_2
        B[counter] = -constant
    
    #Lower Bound LB
    LB_zeros = np.zeros(3*b_max*(nb_phases+1))
    G_min = np.array(G_min)
    LB = np.append(G_min, LB_zeros)

    #Upper Bound UB
    UB = np.ones(3*b_max)
    G_max = np.array(G_max)
    for i in range(3*b_max+1):
        UB = np.concatenate((G_max,UB))
    
    xinit = np.array([(a+b)/2 for a, b in zip(UB, LB)])
    sol = MINLP(xinit, A, B, A_eq, B_eq, LB ,UB, t, ob, jofbuses, q, qc, s, oa, k, l, T, G_previous, C, Y, G_previous)

目标函数:

def objective_fun(x, t, ob, jofbuses, q, qc, s, oa, k, l, T, G_next, C, Y, G_previous):
    nb_phases = len(G_next)
    b_max = len(t)
    no_lanegroups = len(q)
    obj = 0
    obj_a = 0
    obj_b = 0

    G = x[0:nb_phases]

    for j in range(no_lanegroups):
        delay_a = 0.5*q[j]/(1-q[j]/s[j]) * (pow((sum(G_previous[l[j]:nb_phases]) + sum(G[0:k[j]-1]) + sum(Y[l[j]-1:nb_phases]) + sum(Y[0:k[j]-1])),2) + pow(sum(G[l[j]:nb_phases]) + sum(G_next[0:k[j]-1]) + sum(Y[l[j]-1:nb_phases]) + sum(Y[0:k[j]-1]),2))   
    
        obj = obj + oa*delay_a
        obj_a = obj_a + oa*delay_a
         
    for b in range(b_max): 
   
        delay_b1 = x[(3*nb_phases+1)*b_max + nb_phases + b]*(q[jofbuses[b]-1]/s[jofbuses[b]-1] * (t[b] - (T-1)*C + sum(G_previous[l[jofbuses[b]-1]:nb_phases]) + sum(Y[l[jofbuses[b]-1] -1:nb_phases])) + (T-1)*C - t[b] + sum(Y[0:k[jofbuses[b]-1]-1])) 
        delay_b2 = x[(3*nb_phases+2)*b_max + nb_phases + b-1]*(q[jofbuses[b]-1]/s[jofbuses[b]-1] * (t[b] - (T-1)*C - sum(Y[0:l[jofbuses[b]-1]-1])) + T*C + sum(G_next[0:k[jofbuses[b]-1]-1]) + sum(Y[0:k[jofbuses[b]-1]-1]) - t[b]) 
        delay_b3 = sum(x[nb_phases*b_max + nb_phases*b:nb_phases*b_max + nb_phases*b+k[jofbuses[b]-1]-1]) - q[jofbuses[b]-1]/s[jofbuses[b]-1]*sum(x[2*nb_phases*b_max + nb_phases*b:2*nb_phases*b_max + nb_phases*b +l[jofbuses[b]-1]])
        delay_b = delay_b1+delay_b2 +delay_b3 

        obj = obj + delay_b*ob[b]
        obj_b = obj_b + delay_b*ob[b]
    return obj

MINLP解算器:

def MINLP(xinit, A, B, A_eq, B_eq, LB ,UB, t, ob, jofbuses, q, qc, s, oa, k, l, T, G_next, C, Y, G_previous):
    nb_phases = len(G_next)
    b_max = len(t)
    ## First Solver: IPOPT to get an initial guess
    m_IPOPT = GEKKO(remote = False)
    m_IPOPT.options.SOLVER = 3 #(IPOPT)

    # Array Variable
    rows  = nb_phases + 3*b_max*(nb_phases+1)#48
    x_initial = np.empty(rows,dtype=object)

    for i in range(3*nb_phases*b_max+nb_phases+1):
        x_initial[i] = m_IPOPT.Var(value = xinit[i], lb = LB[i], ub = UB[i])#, integer = False)

    for i in range(3*nb_phases*b_max+nb_phases+1, (3*nb_phases+3)*b_max+nb_phases):
        x_initial[i] = m_IPOPT.Var(value = xinit[i], lb = LB[i], ub = UB[i])#, integer = True)

    # Constraints
    m_IPOPT.axb(A,B,x_initial,etype = '<=',sparse=False) 

    m_IPOPT.axb(A_eq,B_eq,x_initial,etype = '=',sparse=False)

    # Objective Function
    f = objective_fun(x_initial, t, ob, jofbuses, q, qc, s, oa, k, l, T, G_next, C, Y, G_previous)
    m_IPOPT.Obj(f)

    #Solver
    m_IPOPT.solve(disp = True)

####################################################################################################
    ## Second Solver: APOPT to solve MINLP
    m_APOPT = GEKKO(remote = False)
    m_APOPT.options.SOLVER = 1 #(APOPT)

    x = np.empty(rows,dtype=object)

    for i in range(3*nb_phases*b_max+nb_phases+1):
        x[i] = m_APOPT.Var(value = x_initial[i], lb = LB[i], ub = UB[i], integer = False)

    for i in range(3*nb_phases*b_max+nb_phases+1, (3*nb_phases+3)*b_max+nb_phases):
        x[i] = m_APOPT.Var(value = x_initial[i], lb = LB[i], ub = UB[i], integer = True)

    # Constraints
    m_APOPT.axb(A,B,x,etype = '<=',sparse=False) 

    m_APOPT.axb(A_eq,B_eq,x,etype = '=',sparse=False)

    # Objective Function
    f = objective_fun(x, t, ob, jofbuses, q, qc, s, oa, k, l, T, G_next, C, Y, G_previous)
    m_APOPT.Obj(f)

    #Solver
    m_APOPT.solve(disp = False)

    return x 

定义参数并调用Optimize_G:

#Define Parameters

C = 120 
T = 31
b_max = 2
G_base = [12,31,12,11,1,41]
G_max = [106, 106, 106, 106, 106, 106]
G_min = [7,3,7,10,0,7]
G_previous = [7.3333333, 34.16763, 7.1333333, 10.0, 2.2008602e-16, 47.365703]
Y = [2, 2, 3, 2, 2, 3]
jofbuses = [9,3]
k = [3,1,6,4,1,2,5,4,2,3]
l = [3,2,6,5,1,3,6,4,3,4]
nb_phases = 6
oa = 1.25
ob = [39,42]
t = [3600.2, 3603.5]
q = [0.038053758888888886, 0.215206065, 0.11325116416666667, 0.06299876472222223,0.02800455611111111,0.18878488361111112,0.2970903402777778, 0.01876728472222222, 0.2192723663888889, 0.06132227222222222]
qc = [0.04083333333333333, 0.2388888888888889, 0.10555555555555556, 0.0525, 0.030555555555555555, 0.20444444444444446,0.31083333333333335, 0.018333333333333333, 0.12777777777777777, 0.07138888888888889]
s = [1.0, 1.0, 1.0, 1.0, 0.5, 1.0, 1.0, 0.5, 0.5, 0.5]

nb_phases = len(G_base)
G_max = []
for i in range(nb_phases):
    G_max.append(C - sum(Y[0:nb_phases]))

Optimise_G(t,ob, jofbuses, q, qc, s, oa, k, l, T, G_previous, C, Y, G_previous, G_max, G_min)

有没有办法解决这个问题?谢谢!

共有1个答案

章绪
2023-03-14

APOPT solver的Windows版本崩溃,无法找到解决方案。然而,APOPT的在线Linux版本能够找到解决方案。在GitHub上获得Gekko的最新版本(v1.0.0预发行版)。新版本发布后,pip install gekko--upgrade将提供此功能,但现在您需要将源代码复制到Lib\site packages\gekko\gekko.py。更新gekko后,切换到remote=True,如下所示。

import numpy as np 
from gekko import GEKKO 

# Define matrices A,A_eq, and vectors b, b_eq for the optimization

def Optimise_G(t,ob, jofbuses, q, qc, s, oa, k, l, T, G_next, C, Y, G_previous, G_max, G_min):
    Mbig_1 = T*C
    Mbig_2 = C
    nb_phases = len(G_next)
    b_max = len(t)
    no_lanegroups = len(q)

    A_eq = np.zeros(((nb_phases+1)*b_max + 1, (3*nb_phases+3)*b_max+nb_phases))
    for i in range(nb_phases):
        A_eq[0][i] = 1

    #B_eq = np.zeros(((nb_phases+1)*b_max + 1, 1))
    B_eq = np.zeros((nb_phases+1)*b_max + 1)
    B_eq[0] = C - sum(Y[0:nb_phases])

    counter_eq = 0

    # G(i)=Ga(i,b)+Gb(i,b)+Gc(i,b)
    for b in range(b_max):
        for i in range(nb_phases):
            counter_eq = counter_eq + 1
            A_eq[counter_eq][i] = 1
            A_eq[counter_eq][nb_phases*(b+1)+ i] = -1
            A_eq[counter_eq][nb_phases*b_max + nb_phases*(b+1) + i] = -1
            A_eq[counter_eq][2*nb_phases*b_max + nb_phases*(b+1) + i] = -1


    # ya(b)+y(b)+y(c)=1
    for b in range(b_max):
        counter_eq = counter_eq + 1
        A_eq[counter_eq][3*nb_phases*b_max + nb_phases + b] = 1
        A_eq[counter_eq][(3*nb_phases+1)*b_max + nb_phases + b] = 1
        A_eq[counter_eq][(3*nb_phases+2)*b_max + nb_phases + b] = 1
        B_eq[counter_eq] = 1
    

    A = np.zeros((no_lanegroups + (2*3*nb_phases+4)*b_max, (3*nb_phases+3)*b_max+nb_phases))
    B = np.zeros(no_lanegroups + (2*3*nb_phases+4)*b_max)

    counter = -1

    # Sum Gi (i in Ij)>=Gj,min
    for j in range(no_lanegroups):
        counter = counter + 1
        for i in range(k[j], l[j]+1):
            A[counter][i-1] = -1
        B[counter] = -C*qc[j]/s[j]

    # ya(b)G_lb(i)<=Ga(i,b), yb(b)G_lb(i)<=Gb(i,b), yc(b)G_lb(i)<=Gc(i,b)
    for b in range(b_max): 
        for i in range(nb_phases):
            counter = counter + 1
            A[counter][nb_phases*(b+1)+i] = -1
            A[counter][3*nb_phases*b_max + nb_phases + b] = G_min[i]
            B[counter] = 0
        
            counter = counter + 1
            A[counter][nb_phases*b_max + nb_phases*(b+1) + i] = -1
            A[counter][(3*nb_phases+1)*b_max + nb_phases + b] = G_min[i]
            B[counter] = 0
        
            counter = counter + 1
            A[counter][2*nb_phases*b_max + nb_phases*(b+1) +i] = -1
            A[counter][(3*nb_phases+2)*b_max + nb_phases + b] = G_min[i]
            B[counter] = 0
        
    # ya(b)Gmax(i)>=Ga(i,b), yb(b)Gmax(i)>=Gb(i,b), yc(b)Gmax(i)>=Gc(i,b)
    for b in range(b_max):
        for i in range(nb_phases):
            counter = counter + 1
            A[counter][nb_phases*(b+1) +i] = 1
            A[counter][3*nb_phases*b_max + nb_phases + b] = -G_max[i]
            B[counter] = 0
        
            counter = counter + 1
            A[counter][nb_phases*b_max + nb_phases*(b+1) + i] = 1
            A[counter][(3*nb_phases+1)*b_max + nb_phases + b] = -G_max[i]
            B[counter] = 0
        
            counter = counter + 1
            A[counter][2*nb_phases*b_max + nb_phases*(b+1) +i] = 1
            A[counter][(3*nb_phases+2)*b_max + nb_phases + b] = -G_max[i]
            B[counter] = 0  
        
    # (1-yc(b))t(b)<=(T-1)C+sum(Gi(1:l(jofbuses(b))))+sum(Y(1:l(jofbuses(b))-1))
    for b in range(b_max):
        counter = counter + 1
        A[counter][0:l[jofbuses[b]-1]] = -np.ones((1,l[jofbuses[b]-1]))
        A[counter][(3*nb_phases+2)*b_max+nb_phases+b] = -t[b]
        B[counter] = -t[b] + (T-1)*C + sum(Y[0:l[jofbuses[b]-1]-1])

    # (T-1)C+sum(Gi(1:l(jofbuses(b))))+sum(Y(1:l(jofbuses(b))-1))<=yc(b)t(b)+(1-yc(b))Mbig_1
    for b in range(b_max):
        counter = counter + 1
        A[counter][0:l[jofbuses[b]-1]] = np.ones((1,l[jofbuses[b]-1]))
        A[counter][(3*nb_phases+2)*b_max+nb_phases+b] = -t[b] + Mbig_1
        B[counter] = Mbig_1 - (T-1)*C - sum(Y[0:l[jofbuses[b]-1]-1])


    # -Mbig_2(1-yb(b))<=db(b)=right-hand side of Equation (6)
    for b in range(b_max):
        counter = counter + 1
        constant = q[jofbuses[b]-1]/s[jofbuses[b]-1]*(t[b] - (T-1)*C + sum(G_previous[l[jofbuses[b]-1]:nb_phases]) + sum(Y[l[jofbuses[b]-1] -1:nb_phases]))+ (T-1)*C + sum(Y[0:k[jofbuses[b]-1]-1]) - t[b]  
        A[counter][0:k[jofbuses[b]-1]-1] = -np.ones((1,k[jofbuses[b]-1]-1))
        A[counter][(3*nb_phases+1)*b_max + nb_phases + b] = Mbig_2
        B[counter] = constant + Mbig_2


    # db(b)<=Mbig_2 yb(b)
    for b in range(b_max):
        counter = counter + 1
        constant = q[jofbuses[b]-1]/s[jofbuses[b]-1]*(t[b] - (T-1)*C +sum(G_previous[l[jofbuses[b]-1]:nb_phases]) + sum(Y[l[jofbuses[b]-1] -1:nb_phases]))+ (T-1)*C + sum(Y[0:k[jofbuses[b]-1]-1]) - t[b]  
        A[counter][0:k[jofbuses[b]-1]-1] = np.ones((1,k[jofbuses[b]-1]-1))
        A[counter][(3*nb_phases+1)*b_max + nb_phases + b] = -Mbig_2
        B[counter] = -constant
    
    #Lower Bound LB
    LB_zeros = np.zeros(3*b_max*(nb_phases+1))
    G_min = np.array(G_min)
    LB = np.append(G_min, LB_zeros)

    #Upper Bound UB
    UB = np.ones(3*b_max)
    G_max = np.array(G_max)
    for i in range(3*b_max+1):
        UB = np.concatenate((G_max,UB))
    
    xinit = np.array([(a+b)/2 for a, b in zip(UB, LB)])
    sol = MINLP(xinit, A, B, A_eq, B_eq, LB ,UB, t, ob, jofbuses, q, qc, s, oa, k, l, T, G_previous, C, Y, G_previous)
    
def objective_fun(x, t, ob, jofbuses, q, qc, s, oa, k, l, T, G_next, C, Y, G_previous):
    nb_phases = len(G_next)
    b_max = len(t)
    no_lanegroups = len(q)
    obj = 0
    obj_a = 0
    obj_b = 0

    G = x[0:nb_phases]

    for j in range(no_lanegroups):
        delay_a = 0.5*q[j]/(1-q[j]/s[j]) * (pow((sum(G_previous[l[j]:nb_phases]) + sum(G[0:k[j]-1]) + sum(Y[l[j]-1:nb_phases]) + sum(Y[0:k[j]-1])),2) + pow(sum(G[l[j]:nb_phases]) + sum(G_next[0:k[j]-1]) + sum(Y[l[j]-1:nb_phases]) + sum(Y[0:k[j]-1]),2))   
    
        obj = obj + oa*delay_a
        obj_a = obj_a + oa*delay_a
         
    for b in range(b_max): 
   
        delay_b1 = x[(3*nb_phases+1)*b_max + nb_phases + b]*(q[jofbuses[b]-1]/s[jofbuses[b]-1] * (t[b] - (T-1)*C + sum(G_previous[l[jofbuses[b]-1]:nb_phases]) + sum(Y[l[jofbuses[b]-1] -1:nb_phases])) + (T-1)*C - t[b] + sum(Y[0:k[jofbuses[b]-1]-1])) 
        delay_b2 = x[(3*nb_phases+2)*b_max + nb_phases + b-1]*(q[jofbuses[b]-1]/s[jofbuses[b]-1] * (t[b] - (T-1)*C - sum(Y[0:l[jofbuses[b]-1]-1])) + T*C + sum(G_next[0:k[jofbuses[b]-1]-1]) + sum(Y[0:k[jofbuses[b]-1]-1]) - t[b]) 
        delay_b3 = sum(x[nb_phases*b_max + nb_phases*b:nb_phases*b_max + nb_phases*b+k[jofbuses[b]-1]-1]) - q[jofbuses[b]-1]/s[jofbuses[b]-1]*sum(x[2*nb_phases*b_max + nb_phases*b:2*nb_phases*b_max + nb_phases*b +l[jofbuses[b]-1]])
        delay_b = delay_b1+delay_b2 +delay_b3 

        obj = obj + delay_b*ob[b]
        obj_b = obj_b + delay_b*ob[b]
    return obj
    
def MINLP(xinit, A, B, A_eq, B_eq, LB ,UB, t, ob, jofbuses, q, qc, s, oa, k, l, T, G_next, C, Y, G_previous):
    nb_phases = len(G_next)
    b_max = len(t)
    ## First Solver: IPOPT to get an initial guess
    m_IPOPT = GEKKO(remote = True)
    m_IPOPT.options.SOLVER = 3 #(IPOPT)

    # Array Variable
    rows  = nb_phases + 3*b_max*(nb_phases+1)#48
    x_initial = np.empty(rows,dtype=object)

    for i in range(3*nb_phases*b_max+nb_phases+1):
        x_initial[i] = m_IPOPT.Var(value = xinit[i], lb = LB[i], ub = UB[i])#, integer = False)

    for i in range(3*nb_phases*b_max+nb_phases+1, (3*nb_phases+3)*b_max+nb_phases):
        x_initial[i] = m_IPOPT.Var(value = xinit[i], lb = LB[i], ub = UB[i])#, integer = True)

    # Constraints
    m_IPOPT.axb(A,B,x_initial,etype = '<=',sparse=False) 

    m_IPOPT.axb(A_eq,B_eq,x_initial,etype = '=',sparse=False)

    # Objective Function
    f = objective_fun(x_initial, t, ob, jofbuses, q, qc, s, oa, k, l, T, G_next, C, Y, G_previous)
    m_IPOPT.Obj(f)

    #Solver
    m_IPOPT.solve(disp = True)

####################################################################################################
    ## Second Solver: APOPT to solve MINLP
    m_APOPT = GEKKO(remote = True)
    m_APOPT.options.SOLVER = 1 #(APOPT)

    x = np.empty(rows,dtype=object)

    for i in range(3*nb_phases*b_max+nb_phases+1):
        x[i] = m_APOPT.Var(value = x_initial[i], lb = LB[i], ub = UB[i], integer = False)

    for i in range(3*nb_phases*b_max+nb_phases+1, (3*nb_phases+3)*b_max+nb_phases):
        x[i] = m_APOPT.Var(value = x_initial[i], lb = LB[i], ub = UB[i], integer = True)

    # Constraints
    m_APOPT.axb(A,B,x,etype = '<=',sparse=False) 

    m_APOPT.axb(A_eq,B_eq,x,etype = '=',sparse=False)

    # Objective Function
    f = objective_fun(x, t, ob, jofbuses, q, qc, s, oa, k, l, T, G_next, C, Y, G_previous)
    m_APOPT.Obj(f)

    #Solver
    m_APOPT.solve(disp = True)

    return x 
    
#Define Parameters

C = 120 
T = 31
b_max = 2
G_base = [12,31,12,11,1,41]
G_max = [106, 106, 106, 106, 106, 106]
G_min = [7,3,7,10,0,7]
G_previous = [7.3333333, 34.16763, 7.1333333, 10.0, 2.2008602e-16, 47.365703]
Y = [2, 2, 3, 2, 2, 3]
jofbuses = [9,3]
k = [3,1,6,4,1,2,5,4,2,3]
l = [3,2,6,5,1,3,6,4,3,4]
nb_phases = 6
oa = 1.25
ob = [39,42]
t = [3600.2, 3603.5]
q = [0.038053758888888886, 0.215206065, 0.11325116416666667, 0.06299876472222223,0.02800455611111111,0.18878488361111112,0.2970903402777778, 0.01876728472222222, 0.2192723663888889, 0.06132227222222222]
qc = [0.04083333333333333, 0.2388888888888889, 0.10555555555555556, 0.0525, 0.030555555555555555, 0.20444444444444446,0.31083333333333335, 0.018333333333333333, 0.12777777777777777, 0.07138888888888889]
s = [1.0, 1.0, 1.0, 1.0, 0.5, 1.0, 1.0, 0.5, 0.5, 0.5]

nb_phases = len(G_base)
G_max = []
for i in range(nb_phases):
    G_max.append(C - sum(Y[0:nb_phases]))

Optimise_G(t,ob, jofbuses, q, qc, s, oa, k, l, T, G_previous, C, Y, G_previous, G_max, G_min)

APOPT求解器成功并返回整数解。

 APMonitor, Version 1.0.0
 APMonitor Optimization Suite
 ----------------------------------------------------------------
 
 
 --------- APM Model Size ------------
 Each time step contains
   Objects      :            2
   Constants    :            0
   Variables    :           48
   Intermediates:            0
   Connections  :           96
   Equations    :            1
   Residuals    :            1
 
 Number of state variables:             48
 Number of total equations: -          105
 Number of slack variables: -            0
 ---------------------------------------
 Degrees of freedom       :            -57
 
 * Warning: DOF <= 0
 ----------------------------------------------
 Steady State Optimization with APOPT Solver
 ----------------------------------------------
Iter:     1 I:  0 Tm:      0.00 NLPi:    1 Dpth:    0 Lvs:    3 Obj:  1.64E+04 Gap:       NaN
Iter:     2 I: -1 Tm:      0.00 NLPi:    2 Dpth:    1 Lvs:    2 Obj:  1.64E+04 Gap:       NaN
Iter:     3 I:  0 Tm:      0.00 NLPi:    3 Dpth:    1 Lvs:    3 Obj:  1.81E+04 Gap:       NaN
Iter:     4 I: -1 Tm:      0.01 NLPi:    6 Dpth:    1 Lvs:    2 Obj:  1.64E+04 Gap:       NaN
--Integer Solution:   2.15E+04 Lowest Leaf:   1.81E+04 Gap:   1.68E-01
Iter:     5 I:  0 Tm:      0.00 NLPi:    4 Dpth:    2 Lvs:    1 Obj:  2.15E+04 Gap:  1.68E-01
Iter:     6 I: -1 Tm:      0.01 NLPi:    4 Dpth:    2 Lvs:    0 Obj:  1.81E+04 Gap:  1.68E-01
 No additional trial points, returning the best integer solution
 Successful solution
 
 ---------------------------------------------------
 Solver         :  APOPT (v1.0)
 Solution time  :   4.670000000623986E-002 sec
 Objective      :    21455.9882666580     
 Successful solution
 ---------------------------------------------------

如果您需要在Linux上使用Remote=False(本地解决方案),那么新发布的Gekko将提供新的可执行文件。有一些编译器差异,似乎创建本地apm.exe的Windows FORTRAN编译器不如创建本地apm可执行文件的LinuxFORTRAN编译器。这些可执行文件位于Python文件夹的bin文件夹中:Lib\site-包\gekko\bin

 类似资料:
  • 问题内容: 我最近一直在开发一个程序,该程序可以从Java程序编译并运行C ++程序,我已经使一切基本正常(或至少据我所知),但是后来我注意到有些东西被打印到错误流中: 如您所见,如果我通过SSH而不是Java代码进行操作,它会起作用吗? Java代码: 感谢您的任何帮助,它已得到批准! 问题答案: 告诉你问题所在。 您的一级引号过多,因此您正在寻找而不是。 该的Runtime.exec文档说:

  • 在spring Java框架中,我使用context.xml文件创建bean,然后用加载它。 我的程序抛出异常。 文件存在。我使用Gradle进行依赖关系管理,并且我的src文件夹(文件所在的位置)在intellij中标记为resource。我知道由于某种原因,即使我的src文件夹应该包含在classpath变量中,但gradle run任务只是不能从这里抓取它。 当我使用时,所有的工作都很好,但

  • PhpStorm 2021.1.1 Mac M1 11.3 当我尝试使用或查找文件时,PhpStorm未能找到该文件。似乎正在尝试从目录,而不是在项目目录中搜索。 我试图< code >文件|无效缓存,运气不好。有人能帮忙吗?

  • 问题内容: 我在当前工作目录上有文件,但是javac报告: 我正在研究ubuntu。 问题答案: 从上面的评论看来,您尝试过: 在您的Ubuntu系统上。该分离器是在UNIX系统上的Windows。 Ubuntu考虑了直到的命令,因此给出了消息。 应该编译好。

  • 问题内容: 我决定开始一个新问题,以便可以严格关注FileReader错误。 此方法采用文件名和新文件的所需输出名。假设输入的文件名是“ hello.txt” …该方法使其类似于“ /home/User/hello.txt”,它作为参数进入FileReader。问题是,即使该文件确实存在并且目录结构和权限正确,我仍将其作为输出“ /home/User/hello.txt(无此类文件或目录)”获得。