我是Hadoop和编写MapReduce作业的新手,我遇到了一个问题,似乎reducers context.write方法正在将正确的值改为不正确的值。
(int wordCount)
(int counter_dist)
(int counter_startZ)
(int counter_less4)
所有这些都必须在单个MapReduce作业中完成。
正在分析的文本文件
Hello how zou zou zou zou how are you
public class WordCountMapper extends Mapper <Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
String hasKey = itr.nextToken();
word.set(hasKey);
context.write(word, one);
}
}
}
public class WordCountReducer extends Reducer <Text, IntWritable, Text, IntWritable> {
int wordCount = 0; // Total number of words
int counter_dist = 0; // Number of distinct words in the corpus
int counter_startZ = 0; // Number of words that start with letter Z
int counter_less4 = 0; // Number of words that appear less than 4
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int repeatedWords = 0;
System.out.println("###Reduce method starts");
System.out.println("Values: wordCount:" + wordCount + " counter_dist:" + counter_dist + " counter_startZ:" + counter_startZ + " counter_less4:" + counter_less4 + " (start)");
for (IntWritable val : values){
System.out.println("Key: " + key.toString());
repeatedWords++;
wordCount += val.get();
if(key.toString().startsWith("z") || key.toString().startsWith("Z")){
counter_startZ++;
}
System.out.println("Values: wordCount:" + wordCount + " counter_dist:" + counter_dist + " counter_startZ:" + counter_startZ + " counter_less4:" + counter_less4 + " (end of loop)");
}
counter_dist++;
if(repeatedWords < 4){
counter_less4++;
}
System.out.println("Values: wordCount:" + wordCount + " counter_dist:" + counter_dist + " counter_startZ:" + counter_startZ + " counter_less4:" + counter_less4 + " repeatedWords:" + repeatedWords + " (end)");
System.out.println("###Reduce method ends\n");
}
@Override
public void cleanup(Context context) throws IOException, InterruptedException{
System.out.println("###CLEANUP: wordCount: " + wordCount);
System.out.println("###CLEANUP: counter_dist: " + counter_dist);
System.out.println("###CLEANUP: counter_startZ: " + counter_startZ);
System.out.println("###CLEANUP: counter_less4: " + counter_less4);
context.write(new Text("Total words: "), new IntWritable(wordCount));
context.write(new Text("Distinct words: "), new IntWritable(counter_dist));
context.write(new Text("Starts with Z: "), new IntWritable(counter_startZ));
context.write(new Text("Appears less than 4 times:"), new IntWritable(counter_less4));
}
}
Stdout日志,我正在使用它进行调试
###Reduce method starts
Values: wordCount:0 counter_dist:0 counter_startZ:0 counter_less4:0 (start)
Key: Hello
Values: wordCount:1 counter_dist:0 counter_startZ:0 counter_less4:0 (end of loop)
Values: wordCount:1 counter_dist:1 counter_startZ:0 counter_less4:1 repeatedWords:1 (end)
###Reduce method ends
###Reduce method starts
Values: wordCount:1 counter_dist:1 counter_startZ:0 counter_less4:1 (start)
Key: are
Values: wordCount:2 counter_dist:1 counter_startZ:0 counter_less4:1 (end of loop)
Values: wordCount:2 counter_dist:2 counter_startZ:0 counter_less4:2 repeatedWords:1 (end)
###Reduce method ends
###Reduce method starts
Values: wordCount:2 counter_dist:2 counter_startZ:0 counter_less4:2 (start)
Key: how
Values: wordCount:3 counter_dist:2 counter_startZ:0 counter_less4:2 (end of loop)
Key: how
Values: wordCount:4 counter_dist:2 counter_startZ:0 counter_less4:2 (end of loop)
Values: wordCount:4 counter_dist:3 counter_startZ:0 counter_less4:3 repeatedWords:2 (end)
###Reduce method ends
###Reduce method starts
Values: wordCount:4 counter_dist:3 counter_startZ:0 counter_less4:3 (start)
Key: you
Values: wordCount:5 counter_dist:3 counter_startZ:0 counter_less4:3 (end of loop)
Values: wordCount:5 counter_dist:4 counter_startZ:0 counter_less4:4 repeatedWords:1 (end)
###Reduce method ends
###Reduce method starts
Values: wordCount:5 counter_dist:4 counter_startZ:0 counter_less4:4 (start)
Key: zou
Values: wordCount:6 counter_dist:4 counter_startZ:1 counter_less4:4 (end of loop)
Key: zou
Values: wordCount:7 counter_dist:4 counter_startZ:2 counter_less4:4 (end of loop)
Key: zou
Values: wordCount:8 counter_dist:4 counter_startZ:3 counter_less4:4 (end of loop)
Key: zou
Values: wordCount:9 counter_dist:4 counter_startZ:4 counter_less4:4 (end of loop)
Values: wordCount:9 counter_dist:5 counter_startZ:4 counter_less4:4 repeatedWords:4 (end)
###Reduce method ends
###CLEANUP: wordCount: 9
###CLEANUP: counter_dist: 5
###CLEANUP: counter_startZ: 4
###CLEANUP: counter_less4: 4
从日志中可以看出,所有的值都是正确的,而且一切正常。然而,当我打开HDFS中的输出目录并读取“part-r-00000”文件时,在那里写入的context.write的输出完全不同。
Total words: 22
Distinct words: 4
Starts with Z: 0
Appears less than 4 times: 4
对于关键的程序逻辑,绝不能依赖cleanup()
方法。每次撕下JVM时都会调用cleanup()
方法。因此,根据JVM(您无法预测)生成和终止的数量,您的逻辑会变得不稳定。
将初始化
和写入上下文都移动到reduce方法中。
即。
int wordCount = 0; // Total number of words
int counter_dist = 0; // Number of distinct words in the corpus
int counter_startZ = 0; // Number of words that start with letter Z
int counter_less4 = 0; // Number of words that appear less than 4
context.write(new Text("Total words: "), new IntWritable(wordCount));
context.write(new Text("Distinct words: "), new IntWritable(counter_dist));
context.write(new Text("Starts with Z: "), new IntWritable(counter_startZ));
context.write(new Text("Appears less than 4 times:"), new IntWritable(counter_less4));
public class WordCountMapper extends Mapper <Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
String hasKey = itr.nextToken();
word.set(hasKey);
context.getCounter("my_counters", "TOTAL_WORDS").increment(1);
if(hasKey.toUpperCase().startsWith("Z")){
context.getCounter("my_counters", "Z_WORDS").increment(1);
}
context.write(word, one);
}
}
}
可在reducer计数器中计数出现少于4次的非重复字和字的数目。
public class WordCountReducer extends Reducer <Text, IntWritable, Text, IntWritable> {
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int wordCount= 0;
context.getCounter("my_counters", "DISTINCT_WORDS").increment(1);
for (IntWritable val : values){
wordCount += val.get();
}
if(wordCount < 4{
context.getCounter("my_counters", "WORDS_LESS_THAN_4").increment(1);
}
}
}
在Driver类中获取计数器。下面的代码位于提交作业的行之后
CounterGroup group = job.getCounters().getGroup("my_counters");
for (Counter counter : group) {
System.out.println(counter.getName() + "=" + counter.getValue());
}
问题内容: 尝试更改列的数据类型并设置新的默认值时遇到以下错误: 错误1064(42000):您的SQL语法有错误;检查与您的MySQL服务器版本相对应的手册,以在第1行的’VARCHAR(255)NOT NULL SET DEFAULT’{}’‘附近使用正确的语法 问题答案: 同样的第二种可能性(感谢juergen_d):
在尝试更改列的数据类型并设置新的默认值时,我遇到以下错误: 错误1064(42000):您的SQL语法中有错误;查看与您的MySQL server版本相对应的手册,以了解第1行“varchar(255)NOT NULL SET DEFAULT”{}“附近使用的正确语法
我有一个场景,我必须调用具有相同基本URL的API,例如,但具有不同的。 我有一个Retrofit 2的实例,它是通过构建的: 如下所示: 对于某些,我必须调用相同的API,但在其他情况下,我必须从完全不同的调用它。如何更改实例以因此在运行时指向不同的URL? 改装实例没有
我正在寻找一种通过改变散列来改变部分样式的方法。让我以一个例子来解释: > 当前URL为: 然后单击复选框,URL将更改为: 我想更改类的。 我尝试了以下代码,但它不起作用: 实际上,每次哈希更改时,控制台中都不会出现任何内容。
问题内容: 我们需要将某些列的数据类型从int更改为bigint。不幸的是,其中一些表很大,大约有7-10百万行(但不宽)。 Alter表alter列将永远保留在这些表上。有没有更快的方法来实现这一目标? 问题答案: 巧合的是,大约3个小时前,我不得不做一些非常相似的事情。该表是3500万行,它相当宽,并且花了很多时间才能做到这一点: 这就是我最终得到的结果: 这次,这些陈述几乎是即时的。(在速度
问题内容: 我知道,我们不能使用来重命名列,但是可以。 我的问题是:的主要用途是什么? 例如, 代替 已编辑的 问题已替换 的主要用途是什么? 上面的问题被下面的问题取代 为什么我们必须使用更改列而不是修改列? 问题答案: CHANGE COLUMN如果您已经创建了MySQL数据库,并确定其中一个列的名称不正确,则无需删除它并进行替换,您只需使用 change column 重命名即可。 MODI