我正在读一本关于计算机体系结构的书,我在这一章讨论分支预测。有一个小练习,我很难把我的头缠绕在它周围。
考虑以下内部for循环
for (j = 0; j < 2; j++)
{
for (i = 10; i > 0; i = i-1)
x[i] = x[i] + s
}
------>内循环:
L.D F0, 0(R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)
DADDUI R1, R1, -8
BNE R1, R3, Loop
b)1位分支预测缓冲器会改善性能吗(与a相比)?假设第一个预测是“未采取”,并且没有其他分支映射到该条目。
----假设第一个预测是“不采取”,如果预测错误,则1位预测器反转该位。所以它将是NT/T/T。这是否使它具有与问题a)相同的性能?有1个未命中预测。
c)2位分支预测缓冲器会改善性能吗(与a相比)?假设第一个预测是“未采取”,并且没有其他分支映射到该条目。
那是我回答问题的尝试。谁能更详细地解释一下我的答案是对的/错的吗?多谢了。
因为循环只执行2次
你是说外循环条件,你没有显示asm的那个?我现在只回答问题的一部分,以防这个混乱是你的主要问题。如果这不是你困惑的地方,请留言。
内循环底部的条件分支执行20次,模式为:9xt,1xnt,9xt,1xnt。一个交替的预测器大约有50%的时间是错误的,+/-20%的时间取决于它的开始是正确的还是错误的。
分支目标预测(BTP)与分支预测(BP)不同。我知道BTP会找到分支将跳转到的位置,而BP只是决定可能采取哪个分支。 BTP依赖BP吗,如果BTP不使用BP来预测哪个分支被采用,它怎么可能知道分支的目标呢? 我不明白为什么会有这么大的差异?一旦分支被预测为被占用,找到目标并不像读取指令中的地址一样简单吗?
我的代码经常调用具有多个(不可预测的)分支的函数。当我分析时,我发现这是一个小瓶颈,大部分CPU时间用于条件JMP。 考虑以下两个函数,其中原始函数有多个显式分支。 这是一个新函数,我试图在其中删除导致瓶颈的分支。 然而,当我分析新代码时,性能只提高了大约20%,而且调用本身(对mem_funcs数组中的一个func)花费了很长时间。 第二个变量仅仅是一个更隐含的条件吗,因为CPU仍然无法预测将要
我正在编写一些音频代码,其中基本上所有内容都是一个小循环。据我所知,分支预测失败是一个足够大的性能问题,我很难保持代码分支的自由。但是只有这么远的时间才能带我,这让我想知道不同类型的分支。 在 c 中,固定目标的条件分支: 并且(如果我正确理解这个问题),无条件分支到变量目标: 是否存在性能差异?在我看来,如果这两种方法中的一种明显快于另一种,编译器只需将代码转换为匹配即可。 对于那些分支预测非常
如果语句更多地依赖于分支预测,而v表查找更多地依赖分支目标预测,那么
编辑:我的困惑出现了,因为通过预测哪个分支,你肯定也在有效地进行目标预测?? 这个问题与我关于这个主题的第一个问题有内在联系: 分支预测与分支目标预测 无限循环 语句 或语句 语句的“then”子句结尾(跳过子句) 非虚函数调用 从函数返回 虚函数调用 函数指针调用 语句(如果编译为跳转表) 语句 语句(如果编译成一系列语句) 循环条件测试 和运算符 三元运算符 null 如果我有以下代码: (B
我有一个与相关预测因子相关的练习,它指出以下几点: 答:贝兹·R1,D … D:贝兹·R1,F … F:不是R1的R1 预测工作如下 > 获取当前指令 如果是分支,则确定预测器的当前状态并预测分支: a.row 由分支地址确定(在本例中为 A 或 D) b. 列由当前全局移位寄存器确定 c.使用单元格中的值确定来自状态机的预测(当前状态保存在单元格中) 执行分支,并确定实际决策(已采取:1,未采取