我见过很多关于透视表的问题。即使他们不知道他们询问的是透视表,他们通常也是。几乎不可能写出一个包含旋转的所有方面的规范的问题和答案。
...但我要试一试。
现有问题和答案的问题是,问题通常集中在一个细微差别上,而OP很难将其概括出来,以便使用现有的许多好答案。然而,没有一个答案试图给出一个全面的解释(因为这是一个令人生畏的任务)
从我的谷歌搜索中看几个例子
pd.dataframe.pivot
因此,每当有人搜索pivot
时,他们会得到零星的结果,这些结果很可能无法回答他们的特定问题。
您可能会注意到,我给我的列和相关的列值命名得很明显,以与我将在下面的答案中如何枢轴相对应。
import numpy as np
import pandas as pd
from numpy.core.defchararray import add
np.random.seed([3,1415])
n = 20
cols = np.array(['key', 'row', 'item', 'col'])
arr1 = (np.random.randint(5, size=(n, 4)) // [2, 1, 2, 1]).astype(str)
df = pd.DataFrame(
add(cols, arr1), columns=cols
).join(
pd.DataFrame(np.random.rand(n, 2).round(2)).add_prefix('val')
)
print(df)
key row item col val0 val1
0 key0 row3 item1 col3 0.81 0.04
1 key1 row2 item1 col2 0.44 0.07
2 key1 row0 item1 col0 0.77 0.01
3 key0 row4 item0 col2 0.15 0.59
4 key1 row0 item2 col1 0.81 0.64
5 key1 row2 item2 col4 0.13 0.88
6 key2 row4 item1 col3 0.88 0.39
7 key1 row4 item1 col1 0.10 0.07
8 key1 row0 item2 col4 0.65 0.02
9 key1 row2 item0 col2 0.35 0.61
10 key2 row0 item2 col1 0.40 0.85
11 key2 row4 item1 col2 0.64 0.25
12 key0 row2 item2 col3 0.50 0.44
13 key0 row4 item1 col4 0.24 0.46
14 key1 row3 item2 col3 0.28 0.11
15 key0 row3 item1 col1 0.31 0.23
16 key0 row0 item2 col3 0.86 0.01
17 key0 row4 item0 col3 0.64 0.21
18 key2 row2 item2 col0 0.13 0.45
19 key0 row2 item0 col4 0.37 0.70
>
为什么我获得值错误:索引包含重复的条目,无法重塑
如何透视df
以使col
值为列,row
值为索引,val0
的均值为值?
col col0 col1 col2 col3 col4
row
row0 0.77 0.605 NaN 0.860 0.65
row2 0.13 NaN 0.395 0.500 0.25
row3 NaN 0.310 NaN 0.545 NaN
row4 NaN 0.100 0.395 0.760 0.24
如何透视df
以使col
值为列,row
值为索引,val0
的平均值为值,丢失的值为0
?
col col0 col1 col2 col3 col4
row
row0 0.77 0.605 0.000 0.860 0.65
row2 0.13 0.000 0.395 0.500 0.25
row3 0.00 0.310 0.000 0.545 0.00
row4 0.00 0.100 0.395 0.760 0.24
我能得到mean
以外的东西吗,比如sum
?
col col0 col1 col2 col3 col4
row
row0 0.77 1.21 0.00 0.86 0.65
row2 0.13 0.00 0.79 0.50 0.50
row3 0.00 0.31 0.00 1.09 0.00
row4 0.00 0.10 0.79 1.52 0.24
我可以一次做更多的聚合吗?
sum mean
col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4
row
row0 0.77 1.21 0.00 0.86 0.65 0.77 0.605 0.000 0.860 0.65
row2 0.13 0.00 0.79 0.50 0.50 0.13 0.000 0.395 0.500 0.25
row3 0.00 0.31 0.00 1.09 0.00 0.00 0.310 0.000 0.545 0.00
row4 0.00 0.10 0.79 1.52 0.24 0.00 0.100 0.395 0.760 0.24
我可以聚合多个值列吗?
val0 val1
col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4
row
row0 0.77 0.605 0.000 0.860 0.65 0.01 0.745 0.00 0.010 0.02
row2 0.13 0.000 0.395 0.500 0.25 0.45 0.000 0.34 0.440 0.79
row3 0.00 0.310 0.000 0.545 0.00 0.00 0.230 0.00 0.075 0.00
row4 0.00 0.100 0.395 0.760 0.24 0.00 0.070 0.42 0.300 0.46
可以按多列细分吗?
item item0 item1 item2
col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4
row
row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.605 0.86 0.65
row2 0.35 0.00 0.37 0.00 0.00 0.44 0.00 0.00 0.13 0.000 0.50 0.13
row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.000 0.28 0.00
row4 0.15 0.64 0.00 0.00 0.10 0.64 0.88 0.24 0.00 0.000 0.00 0.00
或
item item0 item1 item2
col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4
key row
key0 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00
row2 0.00 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00
row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.00 0.00 0.00
row4 0.15 0.64 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00
key1 row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.65
row2 0.35 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.13
row3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00
row4 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
key2 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00
row2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00
row4 0.00 0.00 0.00 0.00 0.00 0.64 0.88 0.00 0.00 0.00 0.00 0.00
我能聚合列和行一起出现的频率吗,也就是“交叉制表”?
col col0 col1 col2 col3 col4
row
row0 1 2 0 1 1
row2 1 0 2 1 2
row3 0 1 0 2 0
row4 0 1 2 2 1
我如何通过只在两列上枢转来将数据帧从长转换为宽?考虑到这一点,
np.random.seed([3, 1415])
df2 = pd.DataFrame({'A': list('aaaabbbc'), 'B': np.random.choice(15, 8)})
df2
A B
0 a 0
1 a 11
2 a 2
3 a 11
4 b 10
5 b 10
6 b 14
7 c 7
预期的应该类似于
a b c
0 0.0 10.0 7.0
1 11.0 10.0 NaN
2 2.0 14.0 NaN
3 11.0 NaN NaN
在pivot
之后,如何将多索引扁平化为单索引
从
1 2
1 1 2
a 2 1 1
b 2 1 0
c 1 0 0
至
1|1 2|1 2|2
a 2 1 1
b 2 1 0
c 1 0 0
扩展@PirSquared的答案是问题10的另一个版本
数据帧:
d = data = {'A': {0: 1, 1: 1, 2: 1, 3: 2, 4: 2, 5: 3, 6: 5},
'B': {0: 'a', 1: 'b', 2: 'c', 3: 'a', 4: 'b', 5: 'a', 6: 'c'}}
df = pd.DataFrame(d)
A B
0 1 a
1 1 b
2 1 c
3 2 a
4 2 b
5 3 a
6 5 c
输出:
0 1 2
A
1 a b c
2 a b None
3 a None None
5 c None None
使用df.groupby
和pd.series.tolist
t = df.groupby('A')['B'].apply(list)
out = pd.DataFrame(t.tolist(),index=t.index)
out
0 1 2
A
1 a b c
2 a b None
3 a None None
5 c None None
或者使用pd.pivot_table
和df.squeze.
的更好的替代方案
t = df.pivot_table(index='A',values='B',aggfunc=list).squeeze()
out = pd.DataFrame(t.tolist(),index=t.index)
我们从回答第一个问题开始:
为什么我得到valueerror:索引包含重复的条目,无法重塑
这是因为pandas试图用重复的条目重新索引columns
或index
对象。可以使用不同的方法来执行透视。其中一些不太适合于当有重复的键时,它被要求以其为中心。例如。请考虑pd.dataframe.pivot
。我知道有重复的条目共享row
和col
值:
df.duplicated(['row', 'col']).any()
True
因此当我pivot
使用
df.pivot(index='row', columns='col', values='val0')
我得到了上面提到的错误。事实上,当我尝试执行相同的任务时,我会得到相同的错误:
df.set_index(['row', 'col'])['val0'].unstack()
下面是我们可以用来透视的习语列表
pd.dataframe.groupby
+pd.dataframe.unstack
unstack
要在列索引中的级别。groupby
的美化版本。对于许多人来说,这是首选的做法。也是开发人员希望采用的方法。groupby
范例类似,我们指定最终将是行或列级别的所有列,并将这些列设置为索引。然后,我们unstack
列中需要的级别。如果剩余的索引级别或列级别不唯一,则此方法将失败。set_index
非常相似,因为它共享重复密钥限制。API也非常有限。它只对索引
、列
、值
采用标量值。pivot_table
方法类似,我们选择要透视的行、列和值。但是,我们无法聚合,如果行或列不唯一,则此方法将失败。pivot_table
的专用版本,以其最纯粹的形式是执行几个任务的最直观的方式。对于后续的每个答案和问题,我要做的是使用pd.dataframe.pivot_table
来回答它。然后我将提供执行相同任务的替代方案。
如何透视df
以使col
值为列,row
值为索引,val0
的平均值为值,丢失的值为0
?
>
pd.dataframe.pivot_table
> 默认情况下不设置
fill_value
。我倾向于适当地设置。在本例中,我将其设置为0
。注意,我跳过了问题2,因为它与没有fill_value
aggfunc='mean'
是默认值,我不必设置它。我把它写进去是为了明确。
df.pivot_table(
values='val0', index='row', columns='col',
fill_value=0, aggfunc='mean')
col col0 col1 col2 col3 col4
row
row0 0.77 0.605 0.000 0.860 0.65
row2 0.13 0.000 0.395 0.500 0.25
row3 0.00 0.310 0.000 0.545 0.00
row4 0.00 0.100 0.395 0.760 0.24
PD.DataFrame.GroupBy
df.groupby(['row', 'col'])['val0'].mean().unstack(fill_value=0)
pd.crosstab
pd.crosstab(
index=df['row'], columns=df['col'],
values=df['val0'], aggfunc='mean').fillna(0)
我能得到mean
以外的东西吗,比如sum
?
>
pd.dataframe.pivot_table
df.pivot_table(
values='val0', index='row', columns='col',
fill_value=0, aggfunc='sum')
col col0 col1 col2 col3 col4
row
row0 0.77 1.21 0.00 0.86 0.65
row2 0.13 0.00 0.79 0.50 0.50
row3 0.00 0.31 0.00 1.09 0.00
row4 0.00 0.10 0.79 1.52 0.24
PD.DataFrame.GroupBy
df.groupby(['row', 'col'])['val0'].sum().unstack(fill_value=0)
pd.crosstab
pd.crosstab(
index=df['row'], columns=df['col'],
values=df['val0'], aggfunc='sum').fillna(0)
我可以一次做更多的聚合吗?
注意,对于pivot_table
和crosstab
,我需要传递调用列表。另一方面,groupby.agg
能够为有限数量的特殊函数获取字符串。groupby.agg
也会采用我们传递给其他人的相同的调用,但使用字符串函数名通常更有效,因为这样可以提高效率。
>
pd.dataframe.pivot_table
df.pivot_table(
values='val0', index='row', columns='col',
fill_value=0, aggfunc=[np.size, np.mean])
size mean
col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4
row
row0 1 2 0 1 1 0.77 0.605 0.000 0.860 0.65
row2 1 0 2 1 2 0.13 0.000 0.395 0.500 0.25
row3 0 1 0 2 0 0.00 0.310 0.000 0.545 0.00
row4 0 1 2 2 1 0.00 0.100 0.395 0.760 0.24
PD.DataFrame.GroupBy
df.groupby(['row', 'col'])['val0'].agg(['size', 'mean']).unstack(fill_value=0)
pd.crosstab
pd.crosstab(
index=df['row'], columns=df['col'],
values=df['val0'], aggfunc=[np.size, np.mean]).fillna(0, downcast='infer')
我可以聚合多个值列吗?
>
pd.dataframe.pivot_table
我们传递values=['val0','val1']
但我们本可以完全关闭它
df.pivot_table(
values=['val0', 'val1'], index='row', columns='col',
fill_value=0, aggfunc='mean')
val0 val1
col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4
row
row0 0.77 0.605 0.000 0.860 0.65 0.01 0.745 0.00 0.010 0.02
row2 0.13 0.000 0.395 0.500 0.25 0.45 0.000 0.34 0.440 0.79
row3 0.00 0.310 0.000 0.545 0.00 0.00 0.230 0.00 0.075 0.00
row4 0.00 0.100 0.395 0.760 0.24 0.00 0.070 0.42 0.300 0.46
PD.DataFrame.GroupBy
df.groupby(['row', 'col'])['val0', 'val1'].mean().unstack(fill_value=0)
可以按多列细分吗?
>
pd.dataframe.pivot_table
df.pivot_table(
values='val0', index='row', columns=['item', 'col'],
fill_value=0, aggfunc='mean')
item item0 item1 item2
col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4
row
row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.605 0.86 0.65
row2 0.35 0.00 0.37 0.00 0.00 0.44 0.00 0.00 0.13 0.000 0.50 0.13
row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.000 0.28 0.00
row4 0.15 0.64 0.00 0.00 0.10 0.64 0.88 0.24 0.00 0.000 0.00 0.00
PD.DataFrame.GroupBy
df.groupby(
['row', 'item', 'col']
)['val0'].mean().unstack(['item', 'col']).fillna(0).sort_index(1)
可以按多列细分吗?
>
pd.dataframe.pivot_table
df.pivot_table(
values='val0', index=['key', 'row'], columns=['item', 'col'],
fill_value=0, aggfunc='mean')
item item0 item1 item2
col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4
key row
key0 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00
row2 0.00 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00
row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.00 0.00 0.00
row4 0.15 0.64 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00
key1 row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.65
row2 0.35 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.13
row3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00
row4 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
key2 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00
row2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00
row4 0.00 0.00 0.00 0.00 0.00 0.64 0.88 0.00 0.00 0.00 0.00 0.00
PD.DataFrame.GroupBy
df.groupby(
['key', 'row', 'item', 'col']
)['val0'].mean().unstack(['item', 'col']).fillna(0).sort_index(1)
pd.dataframe.set_index
因为这组键对于行和列都是唯一的
df.set_index(
['key', 'row', 'item', 'col']
)['val0'].unstack(['item', 'col']).fillna(0).sort_index(1)
我能聚合列和行一起出现的频率吗,也就是“交叉制表”?
>
pd.dataframe.pivot_table
df.pivot_table(index='row', columns='col', fill_value=0, aggfunc='size')
col col0 col1 col2 col3 col4
row
row0 1 2 0 1 1
row2 1 0 2 1 2
row3 0 1 0 2 0
row4 0 1 2 2 1
PD.DataFrame.GroupBy
df.groupby(['row', 'col'])['val0'].size().unstack(fill_value=0)
pd.crosstab
pd.crosstab(df['row'], df['col'])
PD.Factorize
+NP.bincount
# get integer factorization `i` and unique values `r`
# for column `'row'`
i, r = pd.factorize(df['row'].values)
# get integer factorization `j` and unique values `c`
# for column `'col'`
j, c = pd.factorize(df['col'].values)
# `n` will be the number of rows
# `m` will be the number of columns
n, m = r.size, c.size
# `i * m + j` is a clever way of counting the
# factorization bins assuming a flat array of length
# `n * m`. Which is why we subsequently reshape as `(n, m)`
b = np.bincount(i * m + j, minlength=n * m).reshape(n, m)
# BTW, whenever I read this, I think 'Bean, Rice, and Cheese'
pd.DataFrame(b, r, c)
col3 col2 col0 col1 col4
row3 2 0 0 1 0
row2 1 2 1 0 2
row0 1 0 1 2 1
row4 2 2 0 1 1
pd.get_dummies
pd.get_dummies(df['row']).T.dot(pd.get_dummies(df['col']))
col0 col1 col2 col3 col4
row0 1 2 0 1 1
row2 1 0 2 1 2
row3 0 1 0 2 0
row4 0 1 2 2 1
我如何通过只在两列上枢转来将数据帧从长转换为宽?
第一步是给每一行分配一个数字--这个数字将是该值在枢轴结果中的行索引。这是使用groupby.cumcount
完成的:
df2.insert(0, 'count', df.groupby('A').cumcount())
df2
count A B
0 0 a 0
1 1 a 11
2 2 a 2
3 3 a 11
4 0 b 10
5 1 b 10
6 2 b 14
7 0 c 7
第二步是使用新创建的列作为索引来调用dataframe.pivot
。
df2.pivot(*df)
# df.pivot(index='count', columns='A', values='B')
A a b c
count
0 0.0 10.0 7.0
1 11.0 10.0 NaN
2 2.0 14.0 NaN
3 11.0 NaN NaN
在pivot
之后,如何将多索引扁平化为单索引
如果columns
使用字符串join
键入object
df.columns = df.columns.map('|'.join)
其他格式
df.columns = df.columns.map('{0[0]}|{0[1]}'.format)
我开始使用Spark DataFrames,我需要能够枢轴的数据,以创建多个列1列多行。在Scalding中有内置的功能,我相信Python中的熊猫,但是我找不到任何新的Spark Dataframe。 我假设我可以编写某种自定义函数来实现这一点,但我甚至不知道如何开始,特别是因为我是Spark的新手。如果有人知道如何使用内置功能或如何在Scala中编写东西的建议来实现这一点,我们将不胜感激。
A 数据透视表介绍 B.1 什么是数据透视表? 数据透视表是一种可以快速汇总、分析大量数据表格的交互式工具。使用数据透视表可以按照数据表格的不同字段从多个角度进行透视,并建立交叉表格,用以查看数据表格不同层面的汇总信息、分析结果以及摘要数据。使用数据透视表可以深入分析数值数据,以帮助用户发现关键数据,并做出有关企业中关键数据的决策。 数据透视表是针对以下用途特别设计的:以友好的方式,查看大量的数据
数据透视表显示二维交集的度量值,并在表格视图中表示数据。 图表属性 选择图表类型后,可以更改其属性来自定义图表: 选项 描述 常规 背景颜色 设置图表区域的背景颜色。 不透明度 设置背景颜色的不透明度。 显示边框 显示图表外部边框。 边界颜色 设置图表外部边框的颜色。 显示标题 显示图表的主要标题。 标题 指定图表的标题。 标题字体 设置标题的字体样式。 位置 设置标题的位置。 对齐 设置标题的水
数据透视表显示二维交集的度量值,并在表格视图中表示数据。 图表属性 选择图表类型后,可以更改其属性来自定义图表: 选项 描述 常规 背景颜色 设置图表区域的背景颜色。 显示边框 显示图表外部边框。 边界颜色 设置图表外部边框的颜色。 显示标题 显示图表的主要标题。 标题 指定图表的标题。 标题字体 设置标题的字体样式。 位置 设置标题的位置。 对齐 设置标题的水平对齐方式。 数据 字体 设置字段名
数据透视表显示二维交集的度量值,并在表格视图中表示数据。 图表属性 选择图表类型后,可以更改其属性来自定义图表: 选项 描述 常规 背景颜色 设置图表区域的背景颜色。 不透明度 设置背景颜色的不透明度。 显示边框 显示图表外部边框。 边界颜色 设置图表外部边框的颜色。 显示标题 显示图表的主要标题。 标题 指定图表的标题。 标题字体 设置标题的字体样式。 位置 设置标题的位置。 对齐 设置标题的水