当前位置: 首页 > 面试题库 >

计算两个numpy数组之间的距离

王季萌
2023-03-14
问题内容

我对计算两个numpy数组(x和y)之间的各种空间距离感兴趣。

http://docs.scipy.org/doc/scipy-0.14.0/reference/generation/scipy.spatial.distance.cdist.html

import numpy as np
from scipy.spatial.distance import cdist

x = np.array([[[1,2,3,4,5],
               [5,6,7,8,5],
               [5,6,7,8,5]],
              [[11,22,23,24,5],
               [25,26,27,28,5],
               [5,6,7,8,5]]])
i,j,k = x.shape

xx = x.reshape(i,j*k).T

y = np.array([[[31,32,33,34,5],
               [35,36,37,38,5],
               [5,6,7,8,5]],
              [[41,42,43,44,5],
               [45,46,47,48,5],
               [5,6,7,8,5]]])

yy = y.reshape(i,j*k).T

results =  cdist(xx,yy,'euclidean')
print results

但是,以上结果会产生太多不必要的结果。我如何仅将其限制为所需的结果。

我想计算[1,11]和[31,41]之间的距离;[2,22]和[32,42]等。


问题答案:

如果只需要每对点之间的距离,则无需计算完整的距离矩阵。

而是直接计算:

import numpy as np

x = np.array([[[1,2,3,4,5],
               [5,6,7,8,5],
               [5,6,7,8,5]],
              [[11,22,23,24,5],
               [25,26,27,28,5],
               [5,6,7,8,5]]])

y = np.array([[[31,32,33,34,5],
               [35,36,37,38,5],
               [5,6,7,8,5]],
              [[41,42,43,44,5],
               [45,46,47,48,5],
               [5,6,7,8,5]]])

xx = x.reshape(2, -1)
yy = y.reshape(2, -1)
dist = np.hypot(*(xx - yy))

print dist

为了进一步说明正在发生的事情,首先,我们对数组进行整形,使其具有2xN的形状(这-1是一个占位符,告诉numpy自动沿该轴计算正确的大小):

In [2]: x.reshape(2, -1)
Out[2]: 
array([[ 1,  2,  3,  4,  5,  5,  6,  7,  8,  5,  5,  6,  7,  8,  5],
       [11, 22, 23, 24,  5, 25, 26, 27, 28,  5,  5,  6,  7,  8,  5]])

因此,当我们减去xx和时yy,我们将得到一个2xN的数组:

In [3]: xx - yy
Out[3]: 
array([[-30, -30, -30, -30,   0, -30, -30, -30, -30,   0,   0,   0,   0,
          0,   0],
       [-30, -20, -20, -20,   0, -20, -20, -20, -20,   0,   0,   0,   0,
          0,   0]])

然后,我们可以将其解压缩到dxdy组件中:

In [4]: dx, dy = xx - yy

In [5]: dx
Out[5]: 
array([-30, -30, -30, -30,   0, -30, -30, -30, -30,   0,   0,   0,   0,
         0,   0])

In [6]: dy
Out[6]: 
array([-30, -20, -20, -20,   0, -20, -20, -20, -20,   0,   0,   0,   0,
         0,   0])

并计算距离(np.hypot等于np.sqrt(dx**2 + dy**2)):

In [7]: np.hypot(dx, dy)
Out[7]: 
array([ 42.42640687,  36.05551275,  36.05551275,  36.05551275,
         0.        ,  36.05551275,  36.05551275,  36.05551275,
        36.05551275,   0.        ,   0.        ,   0.        ,
         0.        ,   0.        ,   0.        ])

或者,我们可以自动完成拆箱并一步一步完成:

In [8]: np.hypot(*(xx - yy))
Out[8]: 
array([ 42.42640687,  36.05551275,  36.05551275,  36.05551275,
         0.        ,  36.05551275,  36.05551275,  36.05551275,
        36.05551275,   0.        ,   0.        ,   0.        ,
         0.        ,   0.        ,   0.        ])

如果要计算其他类型的距离,只需更改np.hypot为要使用的函数即可。例如,对于曼哈顿/城市街区距离:

In [9]: dist = np.sum(np.abs(xx - yy), axis=0)

In [10]: dist
Out[10]: array([60, 50, 50, 50,  0, 50, 50, 50, 50,  0,  0,  0,  0,  0,  0])


 类似资料:
  • 我对计算两个numpy阵列(x和y)之间的各种空间距离感兴趣。 http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.distance.cdist.html 但是,上述结果会产生太多不需要的结果。我怎样才能限制它只用于我所需的结果。 我想计算[1,11]和[31,41]之间的距离;[2,22]和[32,42

  • 我想写一个函数来计算中的坐标与中的每个坐标之间的欧氏距离,并通过列生成维度行的距离数组(其中是中的坐标数,是中的坐标数)。 NB:为了简单起见,我不想使用任何其他库。 运行该函数将生成: 我一直在试着运行下面的程序 但我得到以下错误: 非常感谢。

  • 问题内容: 我需要创建一个类来计算两点之间的距离。我被困住了,我是一个完全的初学者。这是我的课程: 第二课。 我不确定如何在两个定义的点之间获取点对象(中间点)。 我可以创建点对象,但不确定如何通过位于这两个点对象之间的方法返回点对象。 问题答案: 平面上的两个点(x1,y1)和(x2,y2)之间的距离为: 但是,如果您想要的只是两个点的中点,则应将中点函数更改为: 这将返回一个全新的点对象,其点

  • 问题内容: 我有以下代码。它在Python中永远存在。必须有一种方法可以将此计算结果转换为广播… 问题答案: 您可以在计算出的差异后使用,如下所示: 或使用其可选的metric参数集,以根据问题的需要给我们平方的欧几里得距离,如下所示-

  • 我试图使用Scala类计算两点之间的距离。但它给出了一个错误说 类型不匹配;发现:其他。需要类型(具有基础类型点):?{def x:?}请注意,隐式转换不适用,因为它们是不明确的:在[A](x:A)类型的对象Predef中确保[A]的方法any2Ensuring和在[A](x:A)“ArroAssoc[A]类型的对象Predef中的方法Ani2ArrowasSoc都是可能的其他转换函数。输入到?{

  • 问题内容: 我正在使用SQL Server。 我有两个这样的表: 表1 : 表2 : 我希望得到一个输出表,该表将比较两个表中所有的点,并告诉我在哪里有一个是的X距离之内的。 有人知道该怎么做吗?一个表大约有800行,另一个表大约有300,000行。我很困惑,甚至从哪里开始… 问题答案: 假设您的GeoLoc列在SQL Server中为“地理位置”数据类型,则您应该可以使用以下内容: “ Dist