所以我的数据框看起来像这样:
from pandas.compat import StringIO
d = StringIO('''
date,site,country,score
2018-01-01,google,us,100
2018-01-01,google,ch,50
2018-01-02,google,us,70
2018-01-03,google,us,60
2018-01-02,google,ch,10
2018-01-01,fb,us,50
2018-01-02,fb,us,55
2018-01-03,fb,us,100
2018-01-01,fb,es,100
2018-01-02,fb,gb,100
''')
df = pd.read_csv(d, sep=",")
每个站点的分数因国家/地区而异。我正在尝试查找每个站点/国家/地区组合得分的1/3/5天差异。
输出应为:
date,site,country,score,1_day_diff
2018-01-01,google,ch,50,0
2018-01-02,google,ch,10,-40
2018-01-01,google,us,100,0
2018-01-02,google,us,70,-30
2018-01-03,google,us,60,-10
2018-01-01,fb,es,100,0
2018-01-02,fb,gb,100,0
2018-01-01,fb,us,50,0
2018-01-02,fb,us,55,5
2018-01-03,fb,us,100,45
我首先尝试按网站/国家/日期排序,然后按网站和国家/地区分组,但是我无法从分组对象中获得区别。
首先,对DataFrame排序,然后您需要做的是groupby.diff()
:
df = df.sort_values(by=['site', 'country', 'date'])
df['diff'] = df.groupby(['site', 'country'])['score'].diff().fillna(0)
df
Out:
date site country score diff
8 2018-01-01 fb es 100 0.0
9 2018-01-02 fb gb 100 0.0
5 2018-01-01 fb us 50 0.0
6 2018-01-02 fb us 55 5.0
7 2018-01-03 fb us 100 45.0
1 2018-01-01 google ch 50 0.0
4 2018-01-02 google ch 10 -40.0
0 2018-01-01 google us 100 0.0
2 2018-01-02 google us 70 -30.0
3 2018-01-03 google us 60 -10.0
sort_values
不支持任意排序。如果您需要进行任意排序(例如Google在fb之前),则需要将它们存储在集合中并将列设置为分类。然后sort_values将遵守您在此处提供的顺序。