我正在尝试恢复TensorFlow模型。我遵循以下示例:http :
//nasdag.github.io/blog/2016/01/19/classifying-bees-with-google-
tensorflow/
在示例的代码末尾,我添加了以下几行:
saver = tf.train.Saver()
save_path = saver.save(sess, "model.ckpt")
print("Model saved in file: %s" % save_path)
创建了两个文件:checkpoint和model.ckpt。
在一个新的python文件(tomas_bees_predict.py)中,我有以下代码:
import tensorflow as tf
saver = tf.train.Saver()
with tf.Session() as sess:
# Restore variables from disk.
saver.restore(sess, "model.ckpt")
print("Model restored.")
但是,当我执行代码时,出现此错误:
Traceback (most recent call last):
File "tomas_bees_predict.py", line 3, in <module>
saver = tf.train.Saver()
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 705, in __init__
raise ValueError("No variables to save")
ValueError:没有要保存的变量
有没有办法读取mode.ckpt文件并查看保存了哪些变量?或者也许有人可以根据上述示例帮助保存模型并还原模型?
编辑1:
我想我尝试运行相同的代码以重新创建模型结构,但出现错误。我认为这可能与以下事实有关:此处描述的代码未使用命名变量:http :
//nasdag.github.io/blog/2016/01/19/classifying-bees-with-google-
tensorflow/
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
所以我做了这个实验。我编写了两个版本的代码(带有和不带有命名变量)来保存模型,而代码则还原了模型。
tensor_save_named_vars.py :
import tensorflow as tf
# Create some variables.
v1 = tf.Variable(1, name="v1")
v2 = tf.Variable(2, name="v2")
# Add an op to initialize the variables.
init_op = tf.initialize_all_variables()
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Later, launch the model, initialize the variables, do some work, save the
# variables to disk.
with tf.Session() as sess:
sess.run(init_op)
print "v1 = ", v1.eval()
print "v2 = ", v2.eval()
# Save the variables to disk.
save_path = saver.save(sess, "/tmp/model.ckpt")
print "Model saved in file: ", save_path
tensor_save_not_named_vars.py:
import tensorflow as tf
# Create some variables.
v1 = tf.Variable(1)
v2 = tf.Variable(2)
# Add an op to initialize the variables.
init_op = tf.initialize_all_variables()
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Later, launch the model, initialize the variables, do some work, save the
# variables to disk.
with tf.Session() as sess:
sess.run(init_op)
print "v1 = ", v1.eval()
print "v2 = ", v2.eval()
# Save the variables to disk.
save_path = saver.save(sess, "/tmp/model.ckpt")
print "Model saved in file: ", save_path
tensor_restore.py:
import tensorflow as tf
# Create some variables.
v1 = tf.Variable(0, name="v1")
v2 = tf.Variable(0, name="v2")
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Later, launch the model, use the saver to restore variables from disk, and
# do some work with the model.
with tf.Session() as sess:
# Restore variables from disk.
saver.restore(sess, "/tmp/model.ckpt")
print "Model restored."
print "v1 = ", v1.eval()
print "v2 = ", v2.eval()
这是我执行此代码后得到的:
$ python tensor_save_named_vars.py
I tensorflow/core/common_runtime/local_device.cc:40] Local device intra op parallelism threads: 4
I tensorflow/core/common_runtime/direct_session.cc:58] Direct session inter op parallelism threads: 4
v1 = 1
v2 = 2
Model saved in file: /tmp/model.ckpt
$ python tensor_restore.py
I tensorflow/core/common_runtime/local_device.cc:40] Local device intra op parallelism threads: 4
I tensorflow/core/common_runtime/direct_session.cc:58] Direct session inter op parallelism threads: 4
Model restored.
v1 = 1
v2 = 2
$ python tensor_save_not_named_vars.py
I tensorflow/core/common_runtime/local_device.cc:40] Local device intra op parallelism threads: 4
I tensorflow/core/common_runtime/direct_session.cc:58] Direct session inter op parallelism threads: 4
v1 = 1
v2 = 2
Model saved in file: /tmp/model.ckpt
$ python tensor_restore.py
I tensorflow/core/common_runtime/local_device.cc:40] Local device intra op parallelism threads: 4
I tensorflow/core/common_runtime/direct_session.cc:58] Direct session inter op parallelism threads: 4
W tensorflow/core/common_runtime/executor.cc:1076] 0x7ff953881e40 Compute status: Not found: Tensor name "v2" not found in checkpoint files /tmp/model.ckpt
[[Node: save/restore_slice_1 = RestoreSlice[dt=DT_INT32, preferred_shard=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save/Const_0, save/restore_slice_1/tensor_name, save/restore_slice_1/shape_and_slice)]]
W tensorflow/core/common_runtime/executor.cc:1076] 0x7ff953881e40 Compute status: Not found: Tensor name "v1" not found in checkpoint files /tmp/model.ckpt
[[Node: save/restore_slice = RestoreSlice[dt=DT_INT32, preferred_shard=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save/Const_0, save/restore_slice/tensor_name, save/restore_slice/shape_and_slice)]]
Traceback (most recent call last):
File "tensor_restore.py", line 14, in <module>
saver.restore(sess, "/tmp/model.ckpt")
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 891, in restore
sess.run([self._restore_op_name], {self._filename_tensor_name: save_path})
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 368, in run
results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 444, in _do_run
e.code)
tensorflow.python.framework.errors.NotFoundError: Tensor name "v2" not found in checkpoint files /tmp/model.ckpt
[[Node: save/restore_slice_1 = RestoreSlice[dt=DT_INT32, preferred_shard=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save/Const_0, save/restore_slice_1/tensor_name, save/restore_slice_1/shape_and_slice)]]
Caused by op u'save/restore_slice_1', defined at:
File "tensor_restore.py", line 8, in <module>
saver = tf.train.Saver()
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 713, in __init__
restore_sequentially=restore_sequentially)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 432, in build
filename_tensor, vars_to_save, restore_sequentially, reshape)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 191, in _AddRestoreOps
values = self.restore_op(filename_tensor, vs, preferred_shard)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 106, in restore_op
preferred_shard=preferred_shard)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/ops/io_ops.py", line 189, in _restore_slice
preferred_shard, name=name)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/ops/gen_io_ops.py", line 271, in _restore_slice
preferred_shard=preferred_shard, name=name)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/ops/op_def_library.py", line 664, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1834, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1043, in __init__
self._traceback = _extract_stack()
因此,也许可以将原始代码(请参见上面的外部链接)修改为以下形式:
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
weight_var = tf.Variable(initial, name="weight_var")
return weight_var
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
bias_var = tf.Variable(initial, name="bias_var")
return bias_var
但是,我有一个问题:恢复weight_var和bias_var变量是否足以实现预测?我在具有GPU的功能强大的机器上进行了培训,我想将模型复制到功能不那么强大的没有GPU的计算机上以运行预测。
我想我尝试运行相同的代码以重新创建模型结构,但出现错误。我认为这可能与以下事实有关:此处描述的代码未使用命名变量:http :
//nasdag.github.io/blog/2016/01/19/classifying-bees-with-google-
tensorflow/
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
所以我做了这个实验。我编写了两个版本的代码(带有和不带有命名变量)来保存模型,而代码则还原了模型。
tensor_save_named_vars.py :
import tensorflow as tf
# Create some variables.
v1 = tf.Variable(1, name="v1")
v2 = tf.Variable(2, name="v2")
# Add an op to initialize the variables.
init_op = tf.initialize_all_variables()
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Later, launch the model, initialize the variables, do some work, save the
# variables to disk.
with tf.Session() as sess:
sess.run(init_op)
print "v1 = ", v1.eval()
print "v2 = ", v2.eval()
# Save the variables to disk.
save_path = saver.save(sess, "/tmp/model.ckpt")
print "Model saved in file: ", save_path
tensor_save_not_named_vars.py:
import tensorflow as tf
# Create some variables.
v1 = tf.Variable(1)
v2 = tf.Variable(2)
# Add an op to initialize the variables.
init_op = tf.initialize_all_variables()
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Later, launch the model, initialize the variables, do some work, save the
# variables to disk.
with tf.Session() as sess:
sess.run(init_op)
print "v1 = ", v1.eval()
print "v2 = ", v2.eval()
# Save the variables to disk.
save_path = saver.save(sess, "/tmp/model.ckpt")
print "Model saved in file: ", save_path
tensor_restore.py:
import tensorflow as tf
# Create some variables.
v1 = tf.Variable(0, name="v1")
v2 = tf.Variable(0, name="v2")
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Later, launch the model, use the saver to restore variables from disk, and
# do some work with the model.
with tf.Session() as sess:
# Restore variables from disk.
saver.restore(sess, "/tmp/model.ckpt")
print "Model restored."
print "v1 = ", v1.eval()
print "v2 = ", v2.eval()
这是我执行此代码后得到的:
$ python tensor_save_named_vars.py
I tensorflow/core/common_runtime/local_device.cc:40] Local device intra op parallelism threads: 4
I tensorflow/core/common_runtime/direct_session.cc:58] Direct session inter op parallelism threads: 4
v1 = 1
v2 = 2
Model saved in file: /tmp/model.ckpt
$ python tensor_restore.py
I tensorflow/core/common_runtime/local_device.cc:40] Local device intra op parallelism threads: 4
I tensorflow/core/common_runtime/direct_session.cc:58] Direct session inter op parallelism threads: 4
Model restored.
v1 = 1
v2 = 2
$ python tensor_save_not_named_vars.py
I tensorflow/core/common_runtime/local_device.cc:40] Local device intra op parallelism threads: 4
I tensorflow/core/common_runtime/direct_session.cc:58] Direct session inter op parallelism threads: 4
v1 = 1
v2 = 2
Model saved in file: /tmp/model.ckpt
$ python tensor_restore.py
I tensorflow/core/common_runtime/local_device.cc:40] Local device intra op parallelism threads: 4
I tensorflow/core/common_runtime/direct_session.cc:58] Direct session inter op parallelism threads: 4
W tensorflow/core/common_runtime/executor.cc:1076] 0x7ff953881e40 Compute status: Not found: Tensor name "v2" not found in checkpoint files /tmp/model.ckpt
[[Node: save/restore_slice_1 = RestoreSlice[dt=DT_INT32, preferred_shard=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save/Const_0, save/restore_slice_1/tensor_name, save/restore_slice_1/shape_and_slice)]]
W tensorflow/core/common_runtime/executor.cc:1076] 0x7ff953881e40 Compute status: Not found: Tensor name "v1" not found in checkpoint files /tmp/model.ckpt
[[Node: save/restore_slice = RestoreSlice[dt=DT_INT32, preferred_shard=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save/Const_0, save/restore_slice/tensor_name, save/restore_slice/shape_and_slice)]]
Traceback (most recent call last):
File "tensor_restore.py", line 14, in <module>
saver.restore(sess, "/tmp/model.ckpt")
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 891, in restore
sess.run([self._restore_op_name], {self._filename_tensor_name: save_path})
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 368, in run
results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 444, in _do_run
e.code)
tensorflow.python.framework.errors.NotFoundError: Tensor name "v2" not found in checkpoint files /tmp/model.ckpt
[[Node: save/restore_slice_1 = RestoreSlice[dt=DT_INT32, preferred_shard=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save/Const_0, save/restore_slice_1/tensor_name, save/restore_slice_1/shape_and_slice)]]
Caused by op u'save/restore_slice_1', defined at:
File "tensor_restore.py", line 8, in <module>
saver = tf.train.Saver()
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 713, in __init__
restore_sequentially=restore_sequentially)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 432, in build
filename_tensor, vars_to_save, restore_sequentially, reshape)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 191, in _AddRestoreOps
values = self.restore_op(filename_tensor, vs, preferred_shard)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 106, in restore_op
preferred_shard=preferred_shard)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/ops/io_ops.py", line 189, in _restore_slice
preferred_shard, name=name)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/ops/gen_io_ops.py", line 271, in _restore_slice
preferred_shard=preferred_shard, name=name)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/ops/op_def_library.py", line 664, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1834, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1043, in __init__
self._traceback = _extract_stack()
因此,也许可以将原始代码(请参见上面的外部链接)修改为以下形式:
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
weight_var = tf.Variable(initial, name="weight_var")
return weight_var
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
bias_var = tf.Variable(initial, name="bias_var")
return bias_var
但是,我有一个问题:恢复weight_var和bias_var变量是否足以实现预测?我在具有GPU的功能强大的机器上进行了培训,我想将模型复制到功能不那么强大的没有GPU的计算机上以运行预测。
在TensorFlow中训练模型后: 如何保存已训练的模型? 以后如何还原此保存的模型?
问题内容: 在中训练模型后: 你如何保存经过训练的模型? 以后如何恢复此保存的模型? 问题答案: 从文档: 保存 这仍然是测试版,因此我建议不要使用。如果你仍然想走那条路,这里是tf.saved_model使用指南 Tensorflow <2 simple_save 为了完整起见,我给出了很多好答案,我将加2美分:。也是使用 的独立代码示例。 恢复: 独立示例 为了演示,以下代码生成随机数据。 我
本文向大家介绍SQL Server恢复模型之批量日志恢复模式,包括了SQL Server恢复模型之批量日志恢复模式的使用技巧和注意事项,需要的朋友参考一下 你是否想知道为什么事务日志文件会变得越来越大?事务日志有时候甚至会比你的实际数据库文件还要大,尤其是在应用数据仓库的情况下。为什么会发生这种情况呢?如何控制其大小?数据库恢复模型如何控制事务日志增长?在本系列文章中,我们就将一一给出解答。 批量
问题内容: 我正在张量流中训练一个生成对抗网络(GAN),基本上我们有两个不同的网络,每个网络都有自己的优化器。 问题是我先训练一个网络(g),然后再一起训练g和d。但是,当我调用load函数时: 我有这样的错误(回溯很多): 我可以恢复g网络并继续使用该功能进行训练,但是当我想从头开始盯着d并从存储的模型中盯着g时,我会遇到该错误。 问题答案: 要还原变量的子集,您必须创建一个新变量并将变量的特
我想使用我的神经网络,而不需要再次训练网络。我读到关于 现在我在文件夹中有3个文件:检查点、model.ckpt和model.ckpt.meta 我想在python的另一个类中恢复数据,得到我的神经网络的权重,并进行一次预测。 我该怎么做呢?
MySQL的恢复 常用命令 利用source命令恢复数据库 利用mysql命令恢复(标准) gzip备份文件包的解压方式 常用命令 去除多余注释查看备份数据 egrep -v "#|\*|--|^$" ~/test.sql 利用source命令恢复数据库 进入到mysql数据库客户端,mysql -uroot -p登录后,使用source命令,后面跟脚本文件 source all.sql # 默认