https://blog.csdn.net/u013569304/article/details/81290281
chain model是DNN-HMM模型的一种,使用nnet3结构
使神经网络的输出的帧率缩小三倍,明显的缩小了测试时的计算量,使实时解码更加容易 模型从一开始就用序列级目标函数(正确序列概率的对数)进行训练。MMI在GPU上的实现没有使用Lattices(词图),而是通过在解码图中进行一个完整的前向后向过程实现,这个解码图来源于音素的n-gram语言模型。 因为缩小了帧率,所以需要使用非传统的HMM拓扑结构(允许在单一状态下遍历HMM,可以看一下kaldi的HMM-topology,了解一下kaldi中的HMM拓扑结构)。 在HMM中使用固定的转移概率,并且不训练转移概率(将来可能会训练它们,但是一般来说,神经网络的输出概率可以代替转移概率,具体取决于拓扑结构) 目前只有nnet3支持chain model,并且在线解码还没有实现(这个‘目前’时kaldi官方文档说的前,指的y应该时2016年,现今是否支持在线解码还不了解) 目前比传统DNN-HMMs的结果要稍微好一点(大概提升了5%),但是解码速度比以前快了三倍;训练速度应该也加快了一些,训练速度的提升程度并没有进行精确的计算。