在Tensorflow /Keras中,从https://github.com/pierluigiferrari/ssd_keras运行代码时,请使用估算器:ssd300_evaluation。我收到此错误。
无法获得卷积算法。这可能是因为cuDNN无法初始化,所以请尝试查看上面是否打印了警告日志消息。
我正在运行的问题:
的Python:3.6.4。
Tensorflow版本:1.12.0。
Keras版本:2.2.4。
CUDA:V10.0。
cuDNN:V7.4.1.5。
NVIDIA GeForce GTX 1080。
我也跑了:
import tensorflow as tf
with tf.device('/gpu:0'):
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
with tf.Session() as sess:
print (sess.run(c))
没有错误或问题。
极简示例是:
from keras import backend as K
from keras.models import load_model
from keras.optimizers import Adam
from scipy.misc import imread
import numpy as np
from matplotlib import pyplot as plt
from models.keras_ssd300 import ssd_300
from keras_loss_function.keras_ssd_loss import SSDLoss
from keras_layers.keras_layer_AnchorBoxes import AnchorBoxes
from keras_layers.keras_layer_DecodeDetections import DecodeDetections
from keras_layers.keras_layer_DecodeDetectionsFast import DecodeDetectionsFast
from keras_layers.keras_layer_L2Normalization import L2Normalization
from data_generator.object_detection_2d_data_generator import DataGenerator
from eval_utils.average_precision_evaluator import Evaluator
import tensorflow as tf
%matplotlib inline
import keras
keras.__version__
# Set a few configuration parameters.
img_height = 300
img_width = 300
n_classes = 20
model_mode = 'inference'
K.clear_session() # Clear previous models from memory.
model = ssd_300(image_size=(img_height, img_width, 3),
n_classes=n_classes,
mode=model_mode,
l2_regularization=0.0005,
scales=[0.1, 0.2, 0.37, 0.54, 0.71, 0.88, 1.05], # The scales
for MS COCO [0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05]
aspect_ratios_per_layer=[[1.0, 2.0, 0.5],
[1.0, 2.0, 0.5, 3.0, 1.0/3.0],
[1.0, 2.0, 0.5, 3.0, 1.0/3.0],
[1.0, 2.0, 0.5, 3.0, 1.0/3.0],
[1.0, 2.0, 0.5],
[1.0, 2.0, 0.5]],
two_boxes_for_ar1=True,
steps=[8, 16, 32, 64, 100, 300],
offsets=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5],
clip_boxes=False,
variances=[0.1, 0.1, 0.2, 0.2],
normalize_coords=True,
subtract_mean=[123, 117, 104],
swap_channels=[2, 1, 0],
confidence_thresh=0.01,
iou_threshold=0.45,
top_k=200,
nms_max_output_size=400)
# 2: Load the trained weights into the model.
# TODO: Set the path of the trained weights.
weights_path = 'C:/Users/USAgData/TF SSD
Keras/weights/VGG_VOC0712Plus_SSD_300x300_iter_240000.h5'
model.load_weights(weights_path, by_name=True)
# 3: Compile the model so that Keras won't complain the next time you load it.
adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
ssd_loss = SSDLoss(neg_pos_ratio=3, alpha=1.0)
model.compile(optimizer=adam, loss=ssd_loss.compute_loss)
dataset = DataGenerator()
# TODO: Set the paths to the dataset here.
dir= "C:/Users/USAgData/TF SSD Keras/VOC/VOCtest_06-Nov-2007/VOCdevkit/VOC2007/"
Pascal_VOC_dataset_images_dir = dir+ 'JPEGImages'
Pascal_VOC_dataset_annotations_dir = dir + 'Annotations/'
Pascal_VOC_dataset_image_set_filename = dir+'ImageSets/Main/test.txt'
# The XML parser needs to now what object class names to look for and in which order to map them to integers.
classes = ['background',
'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat',
'chair', 'cow', 'diningtable', 'dog',
'horse', 'motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor']
dataset.parse_xml(images_dirs=[Pascal_VOC_dataset_images_dir],
image_set_filenames=[Pascal_VOC_dataset_image_set_filename],
annotations_dirs=[Pascal_VOC_dataset_annotations_dir],
classes=classes,
include_classes='all',
exclude_truncated=False,
exclude_difficult=False,
ret=False)
evaluator = Evaluator(model=model,
n_classes=n_classes,
data_generator=dataset,
model_mode=model_mode)
results = evaluator(img_height=img_height,
img_width=img_width,
batch_size=8,
data_generator_mode='resize',
round_confidences=False,
matching_iou_threshold=0.5,
border_pixels='include',
sorting_algorithm='quicksort',
average_precision_mode='sample',
num_recall_points=11,
ignore_neutral_boxes=True,
return_precisions=True,
return_recalls=True,
return_average_precisions=True,
verbose=True)
我遇到了此错误,并通过从系统中卸载所有CUDA和cuDNN版本修复了该错误。然后,我为 CUDA 9.0 安装了 CUDA Toolkit9.0 (没有任何补丁)和 cuDNN v7.4.1 。
上面的代码没有给我任何错误,即一切都是整洁的编写和导入等。但当我尝试初始化时,如下所示: 我得到以下错误: 这里的问题是什么?
当通过hadoop作业在ES上编写时,它会因日志而冻结,原因是:bought by:java.lang.noClassDefFoundError:无法初始化类,这可能是什么原因? RemoteTransportException[[未能反序列化类型[org.ellasticsearch.action.admin.cluster.node.liveness.livenessResponse]]];嵌
我有一个使用MIP SDK的Azure函数,当调用< code>MIP时,我得到以下错误。CreateMipContext(...): 令人惊讶的是,该错误仅在 Azure 上运行时发生。在本地运行时,一切都很好。 我正在使用MIP SDK v1.8.86和.NET Core 3.1。 知道OneDS是什么或者是什么导致了错误吗?
新CONF:我做了一些改变来配合你所说的。现在我删除了hibernate-cfg.xml并在spring-servlet.xml中做了所有的conf: 它可能来自我的java文件吗? 错误是: Bean 类 [org.springframework.orm.hibernate4.LocalSessionFactoryBean] 的属性 'transaction' 无效:Bean 属性 'trans
有没有人知道关于Mayer FFT实现的任何事情(而不需要我花很多时间研究代码)? 我正在尝试执行一个卷积,而ifft似乎产生了我所谓的“镜像”输出。换句话说,我的内核+信号长度被限制为N/2,并且任何占据N=0....N/2的内容都被镜像到N=N...N/2左右。在负频率下,它看起来有点像我所期望的FFT...除了在负时间下,它就像一面镜子。 下面是我的卷积代码: 我曾经尝试用这个mayer F
当我在iReport 5.1.0中预览JasperReports的报告时,它执行得很好。它包含一个饼图,当我需要从jsp文件运行它时,问题就来了。 烧烤-1.5-beta1.jar commons-beanutils-1.8.2.jar Commons-Collections-3.2.1.jar commons-digester-2.1.jar commons-javaflow-20060411.