当前位置: 首页 > 面试题库 >

在Python Asyncio中限制异步功能

曹涵润
2023-03-14
问题内容

我有一个listawaitables,我想传递给asyncio.AbstractEventLoop,但我需要节流请求第三方API。

我想避免等待传递future给循环的东西,因为与此同时,我阻止了循环等待。我有什么选择?SemaphoresThreadPools限制同时运行的数量,但这不是我的问题。我需要将请求限制为100 /
sec,但是完成请求所需的时间并不重要。

这是使用标准库的非常简洁(不起作用)的示例,演示了该问题。应该以100 /秒的速度节流,但以116.651 /秒的速度节流。
在asyncio中限制异步请求调度的最佳方法是 什么?

工作代码:

import asyncio
from threading import Lock

class PTBNL:

    def __init__(self):
        self._req_id_seq = 0
        self._futures = {}
        self._results = {}
        self.token_bucket = TokenBucket()
        self.token_bucket.set_rate(100)

    def run(self, *awaitables):

        loop = asyncio.get_event_loop()

        if not awaitables:
            loop.run_forever()
        elif len(awaitables) == 1:
            return loop.run_until_complete(*awaitables)
        else:
            future = asyncio.gather(*awaitables)
            return loop.run_until_complete(future)

    def sleep(self, secs) -> True:

        self.run(asyncio.sleep(secs))
        return True

    def get_req_id(self) -> int:

        new_id = self._req_id_seq
        self._req_id_seq += 1
        return new_id

    def start_req(self, key):

        loop = asyncio.get_event_loop()
        future = loop.create_future()
        self._futures[key] = future
        return future

    def end_req(self, key, result=None):

        future = self._futures.pop(key, None)
        if future:
            if result is None:
                result = self._results.pop(key, [])
            if not future.done():
                future.set_result(result)

    def req_data(self, req_id, obj):
        # Do Some Work Here
        self.req_data_end(req_id)
        pass

    def req_data_end(self, req_id):
        print(req_id, " has ended")
        self.end_req(req_id)

    async def req_data_async(self, obj):

        req_id = self.get_req_id()
        future = self.start_req(req_id)

        self.req_data(req_id, obj)

        await future
        return future.result()

    async def req_data_batch_async(self, contracts):

        futures = []
        FLAG = False

        for contract in contracts:
            req_id = self.get_req_id()
            future = self.start_req(req_id)
            futures.append(future)

            nap = self.token_bucket.consume(1)

            if FLAG is False:
                FLAG = True
                start = asyncio.get_event_loop().time()

            asyncio.get_event_loop().call_later(nap, self.req_data, req_id, contract)

        await asyncio.gather(*futures)
        elapsed = asyncio.get_event_loop().time() - start

        return futures, len(contracts)/elapsed

class TokenBucket:

    def __init__(self):
        self.tokens = 0
        self.rate = 0
        self.last = asyncio.get_event_loop().time()
        self.lock = Lock()

    def set_rate(self, rate):
        with self.lock:
            self.rate = rate
            self.tokens = self.rate

    def consume(self, tokens):
        with self.lock:
            if not self.rate:
                return 0

            now = asyncio.get_event_loop().time()
            lapse = now - self.last
            self.last = now
            self.tokens += lapse * self.rate

            if self.tokens > self.rate:
                self.tokens = self.rate

            self.tokens -= tokens

            if self.tokens >= 0:
                return 0
            else:
                return -self.tokens / self.rate


if __name__ == '__main__':

    asyncio.get_event_loop().set_debug(True)
    app = PTBNL()

    objs = [obj for obj in range(500)]

    l,t = app.run(app.req_data_batch_async(objs))

    print(l)
    print(t)

编辑:我已经添加了一个TrottleTestApp使用信号量的简单示例,但是仍然无法限制执行:

import asyncio
import time


class ThrottleTestApp:

    def __init__(self):
        self._req_id_seq = 0
        self._futures = {}
        self._results = {}
        self.sem = asyncio.Semaphore()

    async def allow_requests(self, sem):
        """Permit 100 requests per second; call 
           loop.create_task(allow_requests())
        at the beginning of the program to start this routine.  That call returns
        a task handle that can be canceled to end this routine.

        asyncio.Semaphore doesn't give us a great way to get at the value other
        than accessing sem._value.  We do that here, but creating a wrapper that
        adds a current_value method would make this cleaner"""

        while True:
            while sem._value < 100: sem.release()
            await asyncio.sleep(1)  # Or spread more evenly 
                                    # with a shorter sleep and 
                                    # increasing the value less

    async def do_request(self, req_id, obj):
        await self.sem.acquire()

        # this is the work for the request
        self.req_data(req_id, obj)

    def run(self, *awaitables):

        loop = asyncio.get_event_loop()

        if not awaitables:
            loop.run_forever()
        elif len(awaitables) == 1:
            return loop.run_until_complete(*awaitables)
        else:
            future = asyncio.gather(*awaitables)
            return loop.run_until_complete(future)

    def sleep(self, secs: [float]=0.02) -> True:

        self.run(asyncio.sleep(secs))
        return True

    def get_req_id(self) -> int:

        new_id = self._req_id_seq
        self._req_id_seq += 1
        return new_id

    def start_req(self, key):

        loop = asyncio.get_event_loop()
        future = loop.create_future()
        self._futures[key] = future
        return future

    def end_req(self, key, result=None):

        future = self._futures.pop(key, None)
        if future:
            if result is None:
                result = self._results.pop(key, [])
            if not future.done():
                future.set_result(result)

    def req_data(self, req_id, obj):
        # This is the method that "does" something
        self.req_data_end(req_id)
        pass

    def req_data_end(self, req_id):

        print(req_id, " has ended")
        self.end_req(req_id)

    async def req_data_batch_async(self, objs):

        futures = []
        FLAG = False

        for obj in objs:
            req_id = self.get_req_id()
            future = self.start_req(req_id)
            futures.append(future)

            if FLAG is False:
                FLAG = True
                start = time.time()

            self.do_request(req_id, obj)

        await asyncio.gather(*futures)
        elapsed = time.time() - start
        print("Roughly %s per second" % (len(objs)/elapsed))

        return futures


if __name__ == '__main__':

    asyncio.get_event_loop().set_debug(True)
    app = ThrottleTestApp()

    objs = [obj for obj in range(10000)]

    app.run(app.req_data_batch_async(objs))

问题答案:

您可以通过实现漏斗算法来做到这一点:

import asyncio
import contextlib
import collections
import time

from types import TracebackType
from typing import Dict, Optional, Type

try:  # Python 3.7
    base = contextlib.AbstractAsyncContextManager
    _current_task = asyncio.current_task
except AttributeError:
    base = object  # type: ignore
    _current_task = asyncio.Task.current_task  # type: ignore

class AsyncLeakyBucket(base):
    """A leaky bucket rate limiter.

    Allows up to max_rate / time_period acquisitions before blocking.

    time_period is measured in seconds; the default is 60.

    """
    def __init__(
        self,
        max_rate: float,
        time_period: float = 60,
        loop: Optional[asyncio.AbstractEventLoop] = None
    ) -> None:
        self._loop = loop
        self._max_level = max_rate
        self._rate_per_sec = max_rate / time_period
        self._level = 0.0
        self._last_check = 0.0
        # queue of waiting futures to signal capacity to
        self._waiters: Dict[asyncio.Task, asyncio.Future] = collections.OrderedDict()

    def _leak(self) -> None:
        """Drip out capacity from the bucket."""
        if self._level:
            # drip out enough level for the elapsed time since
            # we last checked
            elapsed = time.time() - self._last_check
            decrement = elapsed * self._rate_per_sec
            self._level = max(self._level - decrement, 0)
        self._last_check = time.time()

    def has_capacity(self, amount: float = 1) -> bool:
        """Check if there is enough space remaining in the bucket"""
        self._leak()
        requested = self._level + amount
        # if there are tasks waiting for capacity, signal to the first
        # there there may be some now (they won't wake up until this task
        # yields with an await)
        if requested < self._max_level:
            for fut in self._waiters.values():
                if not fut.done():
                    fut.set_result(True)
                    break
        return self._level + amount <= self._max_level

    async def acquire(self, amount: float = 1) -> None:
        """Acquire space in the bucket.

        If the bucket is full, block until there is space.

        """
        if amount > self._max_level:
            raise ValueError("Can't acquire more than the bucket capacity")

        loop = self._loop or asyncio.get_event_loop()
        task = _current_task(loop)
        assert task is not None
        while not self.has_capacity(amount):
            # wait for the next drip to have left the bucket
            # add a future to the _waiters map to be notified
            # 'early' if capacity has come up
            fut = loop.create_future()
            self._waiters[task] = fut
            try:
                await asyncio.wait_for(
                    asyncio.shield(fut),
                    1 / self._rate_per_sec * amount,
                    loop=loop
                )
            except asyncio.TimeoutError:
                pass
            fut.cancel()
        self._waiters.pop(task, None)

        self._level += amount

        return None

    async def __aenter__(self) -> None:
        await self.acquire()
        return None

    async def __aexit__(
        self,
        exc_type: Optional[Type[BaseException]],
        exc: Optional[BaseException],
        tb: Optional[TracebackType]
    ) -> None:
        return None

请注意,我们是有机会从存储桶中泄漏容量,因此无需运行单独的异步任务即可降低该级别;而是在测试足够的剩余容量时泄漏了容量。

请注意,等待容量的任务保存在有序字典中,并且当可能有容量再次空闲时,第一个仍在等待的任务会提前唤醒。

您可以将其用作上下文管理器;尝试在存储块已满时获取存储桶,直到再次释放足够的容量为止:

bucket = AsyncLeakyBucket(100)

# ...

async with bucket:
    # only reached once the bucket is no longer full

或者您可以acquire()直接致电:

await bucket.acquire()  # blocks until there is space in the bucket

或者您可以简单地先测试是否有空间:

if bucket.has_capacity():
    # reject a request due to rate limiting

请注意,您可以通过增加或减少“滴入”存储桶的数量来将某些请求视为“较重”或“较轻”:

await bucket.acquire(10)
if bucket.has_capacity(0.5):

不过要小心点;当混合大小液滴时,在达到或接近最大速率时,小液滴往往先于大液滴流失,因为存在较大可能性的可能性是,在有较大液滴空间之前,有足够的自由容量用于较小液滴。

演示:

>>> import asyncio, time
>>> bucket = AsyncLeakyBucket(5, 10)
>>> async def task(id):
...     await asyncio.sleep(id * 0.01)
...     async with bucket:
...         print(f'{id:>2d}: Drip! {time.time() - ref:>5.2f}')
...
>>> ref = time.time()
>>> tasks = [task(i) for i in range(15)]
>>> result = asyncio.run(asyncio.wait(tasks))
 0: Drip!  0.00
 1: Drip!  0.02
 2: Drip!  0.02
 3: Drip!  0.03
 4: Drip!  0.04
 5: Drip!  2.05
 6: Drip!  4.06
 7: Drip!  6.06
 8: Drip!  8.06
 9: Drip! 10.07
10: Drip! 12.07
11: Drip! 14.08
12: Drip! 16.08
13: Drip! 18.08
14: Drip! 20.09

开始时,存储桶会突然装满,导致其余任务更均匀地分配;每2秒释放出足够的容量以处理另一个任务。

在上面的演示中,最大突发大小等于最大速率值,该示例已将其设置为5。如果您不想允许突发,请将最大速率设置为1,并将时间间隔设置为两次滴水之间的最小时间:

>>> bucket = AsyncLeakyBucket(1, 1.5)  # no bursts, drip every 1.5 seconds
>>> async def task():
...     async with bucket:
...         print(f'Drip! {time.time() - ref:>5.2f}')
...
>>> ref = time.time()
>>> tasks = [task() for _ in range(5)]
>>> result = asyncio.run(asyncio.wait(tasks))
Drip!  0.00
Drip!  1.50
Drip!  3.01
Drip!  4.51
Drip!  6.02

我已经将其打包为Python项目:https :
//github.com/mjpieters/aiolimiter



 类似资料:
  • 问题内容: 我写了这段代码 然后我尝试在另一个文件中使用它 我有一个错误 “等待仅在异步功能中有效” 有什么问题 问题答案: 错误不是指而是。 我利用这个问题的机会来告诉你一个已知的反模式的使用方法:。 错误 正确 另外,要知道有一个正确且重要的特殊情况:(使用try / catch)

  • 问题内容: 最近,我不得不更正Web应用程序(我没有创建)中的安全性问题。安全问题是,它正在使用非仅限HTTP的cookie。因此,我不得不将session- cookie设置为仅http-,这意味着您无法再从javascript中读取(设置)cookie的值。到目前为止,接缝都很容易。 更深层的问题是,使用的Web应用程序 在一百万个地方 。 因此,为了不必重写“一百万行代码”,我不得不创建一个

  • 本文向大家介绍spring异步service中处理线程数限制详解,包括了spring异步service中处理线程数限制详解的使用技巧和注意事项,需要的朋友参考一下 情况简介 spring项目,controller异步调用service的方法,产生大量并发。 具体业务: 前台同时传入大量待翻译的单词,后台业务接收单词,并调用百度翻译接口翻译接收单词并将翻译结果保存到数据库,前台不需要实时返回翻译结果

  • 我正在尝试做一个简单的应用程序,加载数据并对其执行一个操作.所以我的想法是做这个异步。 我有3个数据源,我想异步加载它们。例如data1.xml、data2.xml和data3.xml所有文件加载起来都相当大,所以需要一些时间(这就是为什么我想要异步的原因)。 例如,我创建了一个包含3个文本框的窗口,这些文本框都绑定到一个特定的属性(Text1、Text2、Text3)和一个按钮。当我点击按钮时,

  • 场景:我需要从web应用程序的API收集分页数据,该API的调用限制为每分钟100次。我需要返回的API对象每页包含100个项目,总共105个页面,并且在不断增长(~10500个项目)。同步代码检索所有页面大约需要15分钟,因此不必担心达到调用限制。但是,我想加快数据检索速度,因此我使用和实现了异步调用。数据现在可以在15秒内下载-很好。 问题:我现在达到呼叫限制,因此在过去的5个左右的呼叫中收到

  • 我正在做一个函数(Java-Android),它应该返回一个由Firebase中的数据填充的对象列表。我的问题是,我需要在遍历for中的所有项目后将结果发送给监听器,看看代码: 我需要执行这一行: