Statement
Suppose Z∼N(0,
σ
2
σ^2
σ2). Then we have the tail bound:
P
{
∣
Z
∣
>
t
}
≤
2
π
σ
t
exp
{
−
t
2
2
σ
2
}
\mathbf{P}\{|Z|>t\} \leq \sqrt{\frac{2}{\pi}} \frac{\sigma}{t} \exp \left\{-\frac{t^{2}}{2 \sigma^{2}}\right\}
P{∣Z∣>t}≤π2tσexp{−2σ2t2}
Intuitively, this kind of tail bound is useful because we can get exponentially-fast decay without calculating the distribution function directly.
http://huisaddison.com/blog/mills-inequality.html