当前位置: 首页 > 工具软件 > GraphStream > 使用案例 >

crawler4j_迷你搜索引擎–使用Neo4j,Crawler4j,Graphstream和Encog的基础知识

林浩漫
2023-12-01

crawler4j

继续执行正在实现搜索引擎的Programming Collection Intelligence (PCI)的第4章。

我可能比做一次运动所咬的东西要多。 我认为,与其使用本书中所使用的常规关系数据库结构,不如说我一直想看看Neo4J,所以现在是时候了。 只是说,这不一定是图数据库的理想用例,但是用1块石头杀死3只鸟可能有多难。

在尝试重置SQL Server的教程中,Oracle的想法花了比预期更长的时间,但是幸运的是Neo4j周围有一些很棒的资源。

只是几个:

由于我只是想作为一个小练习来运行它,所以我决定采用内存中的实现方式,而不是将其作为服务在我的机器上运行。 事后看来,这可能是一个错误,而工具和Web界面将帮助我从一开始就更快地可视化数据图。

因为您只能在内存中实现1个可写实例,所以我做了一个双锁单例工厂来创建和清除数据库。

package net.briandupreez.pci.chapter4;

import org.neo4j.graphdb.GraphDatabaseService;
import org.neo4j.graphdb.factory.GraphDatabaseFactory;
import org.neo4j.kernel.impl.util.FileUtils;

import java.io.File;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

public class CreateDBFactory {

    private static GraphDatabaseService graphDb = null;
    public static final String RESOURCES_CRAWL_DB = "resources/crawl/db";

    public static GraphDatabaseService createInMemoryDB() {
        if (null == graphDb) {
            synchronized (GraphDatabaseService.class) {
                if (null == graphDb) {
                    final Map<String, String> config = new HashMap<>();
                    config.put("neostore.nodestore.db.mapped_memory", "50M");
                    config.put("string_block_size", "60");
                    config.put("array_block_size", "300");
                    graphDb = new GraphDatabaseFactory()
                            .newEmbeddedDatabaseBuilder(RESOURCES_CRAWL_DB)
                            .setConfig(config)
                            .newGraphDatabase();

                    registerShutdownHook(graphDb);
                }
            }
        }
        return graphDb;
    }

    private static void registerShutdownHook(final GraphDatabaseService graphDb) {
        Runtime.getRuntime().addShutdownHook(new Thread() {
            @Override
            public void run() {
                graphDb.shutdown();
            }
        });
    }


    public static void clearDb() {
        try {
            if(graphDb != null){
                graphDb.shutdown();
                graphDb = null;
            }
            FileUtils.deleteRecursively(new File(RESOURCES_CRAWL_DB));
        } catch (final IOException e) {
            throw new RuntimeException(e);
        }
    }

}

然后使用Crawler4j创建了一个图形,其中包含以我的博客开头的所有URL,它们与其他URL的关系以及这些URL包含的所有单词和单词的索引。

package net.briandupreez.pci.chapter4;


import edu.uci.ics.crawler4j.crawler.Page;
import edu.uci.ics.crawler4j.crawler.WebCrawler;
import edu.uci.ics.crawler4j.parser.HtmlParseData;
import edu.uci.ics.crawler4j.url.WebURL;
import org.neo4j.graphdb.GraphDatabaseService;
import org.neo4j.graphdb.Node;
import org.neo4j.graphdb.Relationship;
import org.neo4j.graphdb.Transaction;
import org.neo4j.graphdb.index.Index;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class Neo4JWebCrawler extends WebCrawler {


    private final GraphDatabaseService graphDb;


    /**
     * Constructor.
     */
    public Neo4JWebCrawler() {
        this.graphDb = CreateDBFactory.createInMemoryDB();
    }


    @Override
    public boolean shouldVisit(final WebURL url) {
        final String href = url.getURL().toLowerCase();
        return !NodeConstants.FILTERS.matcher(href).matches();
    }

    /**
     * This function is called when a page is fetched and ready
     * to be processed by your program.
     */
    @Override
    public void visit(final Page page) {

        final String url = page.getWebURL().getURL();
        System.out.println("URL: " + url);

        final Index<Node> nodeIndex = graphDb.index().forNodes(NodeConstants.PAGE_INDEX);

        if (page.getParseData() instanceof HtmlParseData) {
            HtmlParseData htmlParseData = (HtmlParseData) page.getParseData();
            String text = htmlParseData.getText();
            //String html = htmlParseData.getHtml();
            List<WebURL> links = htmlParseData.getOutgoingUrls();
            Transaction tx = graphDb.beginTx();
            try {

                final Node pageNode = graphDb.createNode();
                pageNode.setProperty(NodeConstants.URL, url);
                nodeIndex.add(pageNode, NodeConstants.URL, url);

                //get all the words
                final List<String> words = cleanAndSplitString(text);
                int index = 0;
                for (final String word : words) {
                    final Node wordNode = graphDb.createNode();
                    wordNode.setProperty(NodeConstants.WORD, word);
                    wordNode.setProperty(NodeConstants.INDEX, index++);
                    final Relationship relationship = pageNode.createRelationshipTo(wordNode, RelationshipTypes.CONTAINS);
                    relationship.setProperty(NodeConstants.SOURCE, url);
                }

                for (final WebURL webURL : links) {
                    System.out.println("Linking to " + webURL);
                    final Node linkNode = graphDb.createNode();
                    linkNode.setProperty(NodeConstants.URL, webURL.getURL());
                    final Relationship relationship = pageNode.createRelationshipTo(linkNode, RelationshipTypes.LINK_TO);
                    relationship.setProperty(NodeConstants.SOURCE, url);
                    relationship.setProperty(NodeConstants.DESTINATION, webURL.getURL());
                }

                tx.success();
            } finally {
                tx.finish();
            }

        }
    }


    private static List<String> cleanAndSplitString(final String input) {
        if (input != null) {
            final String[] dic = input.toLowerCase().replaceAll("\\p{Punct}", "").replaceAll("\\p{Digit}", "").split("\\s+");
            return Arrays.asList(dic);
        }
        return new ArrayList<>();
    }

}

收集完数据后,我可以查询它并执行搜索引擎的功能。 为此,我决定使用Java Futures,因为这是我仅读过但尚未实现的另一件事。 在我的日常工作环境中,我们使用应用程序服务器中的Weblogic / CommonJ工作管理器来执行相同的任务。

final ExecutorService executorService = Executors.newFixedThreadPool(4);
  final String[] searchTerms = {"java", "spring"};

  List<Callable<TaskResponse>> tasks = new ArrayList<>();
  tasks.add(new WordFrequencyTask(searchTerms));
  tasks.add(new DocumentLocationTask(searchTerms));
  tasks.add(new PageRankTask(searchTerms));
  tasks.add(new NeuralNetworkTask(searchTerms));

  final List<Future<TaskResponse>> results = executorService.invokeAll(tasks);

然后,我开始为以下每个任务创建一个任务,对单词频率,文档位置, 页面排名和神经网络(带有虚假输入/训练数据)进行计数,以根据搜索条件对返回的页面进行排名。 所有代码都在我的公共github博客仓库中。

免责声明:神经网络任务要么没有足够的数据来有效,要么我没有正确实现数据标准化,所以它目前不是很有用,我将在完成while PCI的旅程后再返回书。

值得共享的一项任务是Page Rank,我很快就读懂了一些理论,认为我不那么聪明,然后去寻找实现它的图书馆。 我发现Graphstream是一个很棒的开源项目,它不仅可以完成PageRank的全部工作,还可以查看他们的视频。

因此,很容易实现本练习的PageRank任务。

package net.briandupreez.pci.chapter4.tasks;

import net.briandupreez.pci.chapter4.NodeConstants;
import net.briandupreez.pci.chapter4.NormalizationFunctions;
import org.graphstream.algorithm.PageRank;
import org.graphstream.graph.Graph;
import org.graphstream.graph.implementations.SingleGraph;
import org.neo4j.cypher.javacompat.ExecutionEngine;
import org.neo4j.cypher.javacompat.ExecutionResult;
import org.neo4j.graphdb.Node;
import org.neo4j.graphdb.Relationship;

import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.concurrent.Callable;

public class PageRankTask extends SearchTask implements Callable<TaskResponse> {

    public PageRankTask(final String... terms) {
        super(terms);
    }

    @Override
    protected ExecutionResult executeQuery(final String... words) {
        final ExecutionEngine engine = new ExecutionEngine(graphDb);
        final StringBuilder bob = new StringBuilder("START page=node(*) MATCH (page)-[:CONTAINS]->words ");
        bob.append(", (page)-[:LINK_TO]->related ");
        bob.append("WHERE words.word in [");
        bob.append(formatArray(words));
        bob.append("] ");
        bob.append("RETURN DISTINCT page, related");

        return engine.execute(bob.toString());
    }

    public TaskResponse call() {
        final ExecutionResult result = executeQuery(searchTerms);
        final Map<String, Double> returnMap = convertToUrlTotalWords(result);

        final TaskResponse response = new TaskResponse();
        response.taskClazz = this.getClass();
        response.resultMap = NormalizationFunctions.normalizeMap(returnMap, true);
        return response;
    }

    private Map<String, Double> convertToUrlTotalWords(final ExecutionResult result) {
        final Map<String, Double> uniqueUrls = new HashMap<>();

        final Graph g = new SingleGraph("rank", false, true);
        final Iterator<Node> pageIterator = result.columnAs("related");

        while (pageIterator.hasNext()) {
            final Node node = pageIterator.next();
            final Iterator<Relationship> relationshipIterator = node.getRelationships().iterator();
            while (relationshipIterator.hasNext()) {

                final Relationship relationship = relationshipIterator.next();
                final String source = relationship.getProperty(NodeConstants.SOURCE).toString();
                uniqueUrls.put(source, 0.0);
                final String destination = relationship.getProperty(NodeConstants.DESTINATION).toString();
                g.addEdge(String.valueOf(node.getId()), source, destination, true);

            }
        }


        computeAndSetPageRankScores(uniqueUrls, g);
        return uniqueUrls;
    }

    /**
     * Compute score
     *
     * @param uniqueUrls urls
     * @param graph      the graph of all links
     */
    private void computeAndSetPageRankScores(final Map<String, Double> uniqueUrls, final Graph graph) {
        final PageRank pr = new PageRank();
        pr.init(graph);
        pr.compute();

        for (final Map.Entry<String, Double> entry : uniqueUrls.entrySet()) {
            final double score = 100 * pr.getRank(graph.getNode(entry.getKey()));
            entry.setValue(score);
        }
    }


}

在这两者之间,我发现了一种通过Stackoverflow上的值对映射进行排序的出色实现。

package net.briandupreez.pci.chapter4;

import java.util.*;


public class MapUtil {

    /**
     * Sort a map based on values.
     * The values must be Comparable.
     *
     * @param map       the map to be sorted
     * @param ascending in ascending order, or descending if false
     * @param <K>       key generic
     * @param <V>       value generic
     * @return sorted list
     */
    public static <K, V extends Comparable<? super V>> List<Map.Entry<K, V>> entriesSortedByValues(final Map<K, V> map, final boolean ascending) {

        final List<Map.Entry<K, V>> sortedEntries = new ArrayList<>(map.entrySet());
        Collections.sort(sortedEntries,
                new Comparator<Map.Entry<K, V>>() {
                    @Override
                    public int compare(final Map.Entry<K, V> e1, final Map.Entry<K, V> e2) {
                        if (ascending) {
                            return e1.getValue().compareTo(e2.getValue());
                        } else {
                            return e2.getValue().compareTo(e1.getValue());
                        }
                    }
                }
        );

        return sortedEntries;
    }

}

用于实现所有这些功能的Maven依赖项

<dependency>
               <groupId>com.google.guava</groupId>
               <artifactId>guava</artifactId>
               <version>14.0.1</version>
           </dependency>
           <dependency>
               <groupId>org.encog</groupId>
               <artifactId>encog-core</artifactId>
               <version>3.2.0-SNAPSHOT</version>
           </dependency>
           <dependency>
               <groupId>edu.uci.ics</groupId>
               <artifactId>crawler4j</artifactId>
               <version>3.5</version>
               <type>jar</type>
               <scope>compile</scope>
           </dependency>
           <dependency>
               <groupId>org.neo4j</groupId>
               <artifactId>neo4j</artifactId>
               <version>1.9</version>
           </dependency>
           <dependency>
               <groupId>org.graphstream</groupId>
               <artifactId>gs-algo</artifactId>
               <version>1.1.2</version>
           </dependency>

现在进入关于PCI…优化的第5章。


翻译自: https://www.javacodegeeks.com/2013/07/mini-search-engine-just-the-basics-using-neo4j-crawler4j-graphstream-and-encog.html

crawler4j

 类似资料: