inteldpdk(Intel® Data Plane Development Kit) 是intel开发的一个关于网络数据包处理转发的套件。官网:http://dpdk.org
1)intel网卡
$lspci |grep Ethernet //查看网卡,配置2张网卡
2)CPU核数
$cat /proc/cpuinfo //查看系统有多少个cpu,支持多少硬件线程,配置2个
3)系统内存
$cat /proc/meminfo //系统内存支持hugepage技术
4)查看hpet
$grep hpet/proc/timer_list //需支持hpet
如无显示,需设置BIOS:Advanced -> PCH-IO Configuration -> High Precision Timer ->(Change from Disabled to Enabled if necessary)
Virtualbox上虚拟机Ubuntu如何设置BIOS?
5)系统内核
$uname –a //虚拟机 Ubunut(主机名c) GNU/Linux x86_64
//4.2.0-16.generic(要求Kernelversion >= 2.6.34,支持hugepage)
// Kernel需支持UIO、HUGETLBFS、PROC_PAGE_MONITOR
6)组件库
$gcc –verison //要求gcc4.5.x以上,本机gcc5.2.1;
$sudo apt-get installglibc++
$ldd –version //要求glibc >= 2.7 ,本机2.2.1
如何编译安装glibc(下载地址:http://ftp.gnu.org/gnu/glibc/)升级?
$sudo apt-get install libpcap-dev //安装pcap
若要使用libpcap驱动分析,修改配置文件:$sudo gedit config/common_linuxapp
CONFIG_RTE_LIBRTE_PMD_PCAP=n 修改为:CONFIG_RTE_LIBRTE_PMD_PCAP=y
$sudo apt-get installpython //安装python
$sudo apt-get installpython-dev
1)GIT下载
$sudo apt-get install git //安装git下载
$git clone git://dpdk.org/dpdk //git到/home/c/dpdk目录
配置环境变量:$sudo gedit/etc/profile
export RTE_SDK=/home/c/dpdk
export RTE_TARGET= x86_64-native-linuxapp-gcc
2)脚本安装:
$cd dpdk
$./tools/setup.sh
//step1:14 x86_64-native-linuxapp-gcc
RTE_SDK=/home/c/dpdk
RTE_TARGET= x86_64-native-linuxapp-gcc
//step2:17Insert IGB UIO module
//step3:20Setup hugepage mappings for non-NUMA systems 输入64或128
//step4:23Bind Ethernet device to IGB UIO module
提前关闭网卡:$ifconfig enp0s8 down //enp0s8网卡接口名,地址00.08.0
查看PCI地址;$lspci //找网卡地址
输入PCI地址:00.08.0
//step5:22Display current Ethernet device settings
//step6:26Run test application($RTE_TARGET/app/test)
输入bitmask:0x3
设置CPU的掩码,根据CPU的个数来设置,比如如果只有2个cpu,按照16进制掩码就选择 0x3
提示HPET不可用,需要BIOS设置。
3)手动安装:
——编译
$makeinstall T=x86_64-native-linuxapp-gcc
——配置大页内存(非NUMA)
$echo 128> /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
$mkdir/mnt/huge
$mount -thugetlbfs nodev /mnt/huge
$cat/proc/meminfo | grep Huge //查看大页内存状态
——安装igb_uio驱动
$modprobeuio
$insmodx86_64-native-linuxapp-gcc/kmod/igb_uio.ko
——绑定网卡
$./tools/dpdk_nic_bind.py--status
$ ./tools/dpdk_nic_bind.py -b igb_uio 00.03.0 //网卡1的PCI地址,可用eth1接口名
$./tools/dpdk_nic_bind.py-b igb_uio 00.08.0 //网卡2的PCI地址,可用eth2接口名
——运行testpmd测试程序
$ ./x86_64-native-linuxapp-gcc/app/testpmd -c 0x3 -n 2 -- -i
4)运行示例
$cdexamples/helloworld
$make
$./build/helloworld-c 0xf -n 2
参数解释:c代表用几个core, 采用bit位设置,如 f 代码 二进制 1111 相当于 从0到3这4个core都采用;n 表示设置内存的通道数。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <sys/queue.h>
#include <netinet/in.h>
#include <setjmp.h>
#include <stdarg.h>
#include <ctype.h>
#include <errno.h>
#include <getopt.h>
#include <unistd.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1
#define MBUF_SIZE (2048 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM)
#define NB_MBUF 8192
#define MAX_PKT_BURST 32
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
/*
* Configurable number of RX/TX ring descriptors
*/
#define RTE_TEST_RX_DESC_DEFAULT 128
#define RTE_TEST_TX_DESC_DEFAULT 512
static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
/* ethernet addresses of ports */
static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS];
/* mask of enabled ports */
static uint32_t l2fwd_enabled_port_mask = 0;
/* list of enabled ports */
static uint32_t iweb_dst_ports[RTE_MAX_ETHPORTS];
static unsigned int l2fwd_rx_queue_per_lcore = 1;
struct mbuf_table {
unsigned len;
struct rte_mbuf *m_table[MAX_PKT_BURST];
};
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_TX_QUEUE_PER_PORT 16
struct lcore_queue_conf {
unsigned n_rx_port;
unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
} __rte_cache_aligned;
struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
static const struct rte_eth_conf port_conf = {
.rxmode = {
.split_hdr_size = 0,
.header_split = 0, /**< Header Split disabled */
.hw_ip_checksum = 0, /**< IP checksum offload disabled */
.hw_vlan_filter = 0, /**< VLAN filtering disabled */
.jumbo_frame = 0, /**< Jumbo Frame Support disabled */
.hw_strip_crc = 0, /**< CRC stripped by hardware */
},
.txmode = {
.mq_mode = ETH_MQ_TX_NONE,
},
};
struct rte_mempool * l2fwd_pktmbuf_pool = NULL;
/* Per-port statistics struct */
struct l2fwd_port_statistics {
uint64_t tx;
uint64_t rx;
uint64_t dropped;
} __rte_cache_aligned;
struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS];
/* A tsc-based timer responsible for triggering statistics printout */
#define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */
#define MAX_TIMER_PERIOD 86400 /* 1 day max */
static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000; /* default period is 10 seconds */
/* main processing loop */
static void
l2fwd_main_loop(void)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct rte_mbuf *m;
unsigned lcore_id;
uint64_t prev_tsc, diff_tsc, cur_tsc, timer_tsc;
unsigned i, j, portid, nb_rx;
struct lcore_queue_conf *qconf;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
prev_tsc = 0;
timer_tsc = 0;
lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];
if (qconf->n_rx_port == 0) {
RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id);
return;
}
//RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id);
for (i = 0; i < qconf->n_rx_port; i++) {
portid = qconf->rx_port_list[i];
RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id, portid);
}
while (1) {
cur_tsc = rte_rdtsc();
#if 0
/*
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
if (qconf->tx_mbufs[portid].len == 0)
continue;
l2fwd_send_burst(&lcore_queue_conf[lcore_id],
qconf->tx_mbufs[portid].len,
(uint8_t) portid);
qconf->tx_mbufs[portid].len = 0;
}
/* if timer is enabled */
if (timer_period > 0) {
/* advance the timer */
timer_tsc += diff_tsc;
/* if timer has reached its timeout */
if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
/* do this only on master core */
if (lcore_id == rte_get_master_lcore()) {
print_stats();
/* reset the timer */
timer_tsc = 0;
}
}
}
prev_tsc = cur_tsc;
}
#endif
/*
* Read packet from RX queues
*/
usleep(1);
for (i = 0; i < qconf->n_rx_port; i++) {
portid = qconf->rx_port_list[i];
nb_rx = rte_eth_rx_burst((uint8_t) portid, 0,
pkts_burst, MAX_PKT_BURST);
if (nb_rx <= 0)
{
//printf("xxxxxxxxxxxxxxxxxxxx\n");
break;
}
port_statistics[portid].rx += nb_rx;
printf("rcv packets %d\n", port_statistics[portid].rx);
printf("this timer packets is %d\n", nb_rx);
for (j = 0; j < nb_rx; j++) {
m = pkts_burst[j];
rte_pktmbuf_free(m);
//printf("packet %d\n", j);
//printf("rcv packets %d\n", port_statistics[portid].rx);
}
}
}
}
static int l2fwd_launch_one_lcore(__attribute__((unused)) void *dummy)
{
l2fwd_main_loop();
return 0;
}
/* Parse the argument given in the command line of the application */
static int iweb_parse_args(int argc, char **argv)
{
}
int
main(__attribute__((unused)) int argc, __attribute__((unused)) char **argv)
{
struct lcore_queue_conf *qconf;
struct rte_eth_dev_info dev_info;
int ret;
uint8_t nb_ports;
uint8_t nb_ports_available;
uint8_t portid, last_port;
unsigned lcore_id, rx_lcore_id;
unsigned nb_ports_in_mask = 0;
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
{
rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
}
argc -= ret;
argv += ret;
/* parse application arguments (after the EAL ones) */
ret = iweb_parse_args(argc, argv);
if (ret < 0)
{
rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");
}
/* create the mbuf pool */
l2fwd_pktmbuf_pool = rte_mempool_create("mbuf_pool", NB_MBUF, MBUF_SIZE, 32,
sizeof(struct rte_pktmbuf_pool_private), rte_pktmbuf_pool_init, NULL,
rte_pktmbuf_init, NULL, rte_socket_id(), 0);
if (l2fwd_pktmbuf_pool == NULL)
{
rte_exit(EXIT_FAILURE, "Cannot init mbuf pool\n");
}
nb_ports = rte_eth_dev_count();
if (nb_ports != 1)
{
rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");
}
/* reset l2fwd_dst_ports */
iweb_dst_ports[0] = 0; /* 这里其实只有一个port */
rx_lcore_id = 0;
qconf = NULL;
qconf = &lcore_queue_conf[rx_lcore_id];
qconf->rx_port_list[0] = portid;
qconf->n_rx_port = 1;
printf("Initializing port %u... ", (unsigned) portid);
fflush(stdout);
ret = rte_eth_dev_configure(portid, 1, 1, &port_conf);
if (ret < 0)
{
rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, (unsigned)portid);
}
fflush(stdout);
ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, rte_eth_dev_socket_id(portid),NULL,l2fwd_pktmbuf_pool);
if (ret < 0)
{
rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup:err=%d, port=%u\n", ret, (unsigned)portid);
}
/* init one TX queue on each port */
fflush(stdout);
ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), NULL);
if (ret < 0)
{
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", ret, (unsigned)portid);
}
/* Start device */
ret = rte_eth_dev_start(portid);
if (ret < 0)
{
rte_exit(EXIT_FAILURE, "rte_eth_dev_start:err=%d, port=%u\n", ret, (unsigned)portid);
}
printf("done: \n");
/* 打开网卡的混杂模式 */
rte_eth_promiscuous_enable(portid);
/* launch per-lcore init on every lcore */
rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, NULL, CALL_MASTER);
RTE_LCORE_FOREACH_SLAVE(lcore_id)
{
if (rte_eal_wait_lcore(lcore_id) < 0)
{
return -1;
}
}
return 0;
}