当前位置: 首页 > 工具软件 > AthenaX > 使用案例 >

flink athenaX调研

艾泉
2023-12-01

Uber 有超大量的实时数据需要分析,(路况分析,计算车辆到达需要的时间等)

有More than one trillion real-time 消息通过他们的kafka,so 他们需要一个infrastructure 并且infrastructure (平台)需要有如下特性:

(1) easily navigable(通航) by all users regardless(而不用管) of technical expertise(专门知识)

(2) scalable and efficient enough to analyze real-time events, and (3) robust enough to continuously support hundreds if not thousands of critical(危机) jobs.

athenaX运行流程step below

AthenaX’s workflow follows the steps below:

  1. Users specify a job in SQL and submit it to the AthenaX master.
  2. The AthenaX master validates the query and compiles it down to a Flink job.
  3. The AthenaX master packages, deploys, and executes the job in the YARN cluster. The master also recovers the jobs in the case of a failure.
  4. The job starts processing the data and produces results to external systems (e.g., Kafka).

支持UDF 用户自定义函数

Uber说他们经验表明 70% 流处理都可以用SQL

Select a.a , b.b from a join b on a.id = b.id

compiled 阶段 athenaX会最小化join数据量 提高性能

更快的收集和处理数据,给用户带来更好的体验

从数据中,或把数据和earning联系起来

main component: AthenaX master | catalog | connectors

design role : job catalog cluster instance(flink job)

watchdog 完成监控 fail recover

 

官方文档:https://athenax.readthedocs.io/en/latest/

 类似资料: