min x c T x s . t . A x ≤ b \begin{aligned} \min_x& \quad c^Tx\\ s.t.& \quad Ax\leq b \end{aligned} xmins.t.cTxAx≤b
⇔ \Leftrightarrow ⇔
min x max p ≤ 0 c T x + p T ( b − A x ) \min_x \max_{p\leq 0} c^Tx+p^T(b-Ax) minxmaxp≤0cTx+pT(b−Ax) ≥ \geq ≥
max p ≤ 0 min x c T x + p T ( b − A x ) \max_{p\leq 0} \min_x c^Tx+p^T(b-Ax) maxp≤0minxcTx+pT(b−Ax) ⇔ \Leftrightarrow ⇔ max p ≥ 0 min x ( c T − p T A ) x + p T b \max_{p\geq 0} \min_x (c^T-p^TA)x+p^Tb maxp≥0minx(cT−pTA)x+pTb
⇔ \Leftrightarrow ⇔
min x b T p s . t . A T p = c \begin{aligned} \min_x& \quad b^Tp\\ s.t.& \quad A^Tp=c \end{aligned} xmins.t.bTpATp=c
For any function
f
(
x
,
y
)
f(x,y)
f(x,y):
min
x
max
y
f
(
x
,
y
)
≥
max
y
min
x
f
(
x
,
y
)
\min_x \max_y f(x,y)\geq \max_y \min_xf(x,y)
xminymaxf(x,y)≥ymaxxminf(x,y)
Assume min x c T x \min_x c^Tx minxcTx and max p p T b \max_p p^Tb maxppTb, and x x x and p p p are feasible, then c T x ≥ p T b c^Tx\geq p^Tb cTx≥pTb
If either the primal or the dual is feasible and has a bounded optimal solution, then so is the other, and the values are equal. (Strong duality)
If the primal is unbounded the dual is infeasible. (weak duality)
If the dual is unbounded the primal is infeasible. (weak duality)
It is possible for both to be infeasible.
If the dual is feasible, the primal is either feasible, or infeasible, but cannot be unbounded. (weak duality)
Complementary slackness holds as written, for any formulation of primal and dual.
min x c T x s . t . A x ≥ b x ≥ 0 \begin{aligned} \min_x& \quad c^Tx\\ s.t.& \quad Ax\geq b\\ &\quad x\geq 0 \end{aligned} xmins.t.cTxAx≥bx≥0 \quad\quad\quad min x b T y s . t . A T y ≤ c y ≥ 0 \begin{aligned} \min_x& \quad b^Ty\\ s.t.& \quad A^Ty\leq c\\ &\quad y\geq0 \end{aligned} xmins.t.bTyATy≤cy≥0
Therom