这是一个完美的场景来展示itertools.groupby的威力
请注意,我假设hap、state和ads将出现在所有字典中,并且在重复中也会相似from itertools import groupby
field_to_be_check = "state"
merger = ["city", "ads"]
merge_name = ["cities", "my_ads"]
data = [
{'haps': 'hap0', 'state': 'tamil nadu', 'ads': 'ad1', 'city': 'tirunelveli'},
{'haps': 'hap0', 'state': 'tamil nadu', 'ads': 'ad4', 'city': 'nagerkoil'},
{'haps': 'hap0', 'state': 'tamil nadu', 'ads': 'ad1', 'city': 'tuticorin'},
{'haps': 'hap0', 'state': 'tamil nadu', 'ads': 'ad1', 'city': 'madurai'},
{'haps': 'hap0', 'state': 'tamil nadu', 'ads': 'ad1', 'city': 'chennai'},
{'haps': 'hap1', 'state': 'kerala', 'ads': 'ad2', 'city': 'palakad'},
{'haps': 'hap1', 'state': 'kerala', 'ads': 'ad2', 'city': 'guruvayor'},
{'haps': 'hap1', 'state': 'kerala', 'ads': 'ad2', 'city': 'kolikodu'},
{'haps': 'hap1', 'state': 'kerala', 'ads': 'ad2', 'city': 'kottayam'},
{'haps': 'hap1', 'state': 'kerala', 'ads': 'ad2', 'city': 'idukki'},
{'haps': 'hap2', 'state': 'mumbai', 'ads': 'ad3', 'city': 'Akola'},
{'haps': 'hap2', 'state': 'mumbai', 'ads': 'ad3', 'city': 'Washim'},
{'haps': 'hap2', 'state': 'mumbai', 'ads': 'ad3', 'city': 'Jalna'},
{'haps': 'hap2', 'state': 'mumbai', 'ads': 'ad3', 'city': 'Nanded'},
{'haps': 'hap2', 'state': 'mumbai', 'ads': 'ad3', 'city': 'Latur'}
]
#Function to make the merger lists
def process_group(group, merger_item):
item_set = set()
item_list = []
for item in group:
item_set.add(item[merger_item])
for item in item_set:
item_list.append({merger_item: item})
return item_list
#Group on haps, state and ads
grp = groupby(data,key=lambda x:(x[field_to_be_check]))
result = []
#Iterate through the group and build your result list
for model, group in grp:
cities_dict = {}
cities_dict[field_to_be_check] = model
group_list = list(group)
#Make the list for merger fields
for idx, name in enumerate(merger):
cities_dict[merge_name[idx]] = process_group(group_list, name)
result.append(cities_dict)
print(result)
输出看起来像
^{pr2}$