当前位置: 首页 > 工具软件 > Gollum > 使用案例 >

SPOJ AMR12E Dyslexic Gollum

倪风史
2023-12-01

          AC自动机+DP。题目要求是生成一个长度为n的 0-1 串,其中最长回文子串的长度小于 k ( 1 <= k <= 10)。因为k长度只有10,所以我们可以先预处理出长度小于11的所有回文串,然后利用找出的回文串建立AC自动机,然后生成一个长度为n的满足题意的串就可以了。AC自动机中节点信息保存为到达该点最长的回文串长度,这样就可以保证利用自动机产生子回文串小于 k 的串了,因为一旦到达长度大于k的节点我们就不向下更新就可以了。至于为什么我们建立自动机的时候只找长度小于11的,明显这是因为我们需要的最长的回文子串是9嘛,而为了让生成的串长度不大于9,我们需要防止回文串由9直接加两个变成11,这样就不满足题意了。。。所以需要判断下一步会不会产生长度11的串。。。这题有非AC自动机的DP做法,时空效率都很高,同学们可以去搜一下。。。

#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstdlib>
#include <climits>
#include <cstring>
#include <cstdio>
#include <string>
#include <vector>
#include <cctype>
#include <queue>
#include <cmath>
#include <set>
#include <map>
#define CLR(a, b) memset(a, b, sizeof(a))
using namespace std;

const int MAX_NODE = 2000 * 2;
const int INF = 0x3f3f3f3f;
const int MOD = 1000000007;
const int CHILD_NUM = 2;
const int N = 11;

class ACAutomaton
{
private:
    int chd[MAX_NODE][CHILD_NUM];
    int fail[MAX_NODE];
    int val[MAX_NODE];
    int Q[MAX_NODE];
    int ID[128];
    int sz;
public:
    void Initialize()
    {
        fail[0] = 0;
        ID['0'] = 0; ID['1'] = 1;
    }
    void Reset()
    {
        CLR(chd[0] , 0);sz = 1;
        CLR(val, 0);
    }
    void Insert(char *a, int sit)
    {
        int p = 0;
        for ( ; *a ; a ++)
        {
            int c = ID[*a];
            if (!chd[p][c])
            {
                CLR(chd[sz] , 0);
                chd[p][c] = sz ++;
            }
            p = chd[p][c];
        }
        val[p] = sit;
    }
    void Construct()
    {
        int *s = Q , *e = Q;
        for (int i = 0 ; i < CHILD_NUM ; i ++)
        {
            if (chd[0][i])
            {
                fail[ chd[0][i] ] = 0;
                *e ++ = chd[0][i];
            }
        }
        while (s != e)
        {
            int u = *s++;
            for (int i = 0 ; i < CHILD_NUM ; i ++)
            {
                int &v = chd[u][i];
                if (v)
                {
                    *e ++ = v;
                    fail[v] = chd[fail[u]][i];
                    val[v] = max(val[v], val[fail[v]]);
                }
                else
                {
                    v = chd[fail[u]][i];
                }
            }
        }
    }
    int dp[2][MAX_NODE][12];
    int Work(int n, int k)
    {
        CLR(dp, 0);
        dp[0][0][0] = 1;
        for(int i = 0; i < n; i ++)
        {
            CLR(dp[(i + 1) & 1], 0);
            for(int j = 0; j < sz; j ++)
            {
                if(val[j]  < k && (val[chd[j][0]] < k || val[chd[j][1]] < k)) for(int s = 0; s < k; s ++)
                {
                    if(!dp[i & 1][j][s]) continue;
                    int c = chd[j][0], tp;
                    tp = max(val[c], s);
                    if(tp < k)dp[(i + 1) & 1][c][tp] = (dp[(i + 1) & 1][c][tp] + dp[i & 1][j][s]) % MOD;
                    c = chd[j][1];
                    tp = max(val[c], s);
                    if(tp < k)dp[(i + 1) & 1][c][tp] = (dp[(i + 1) & 1][c][tp] + dp[i & 1][j][s]) % MOD;
                }
            }
        }int ret = 0;
        for(int i = 1; i < sz; i ++)
        {
            for(int j = 0; j < k; j ++)
            {
                ret = (ret + dp[n & 1][i][j]) % MOD;
            }
        }
        return ret;
    }
} AC;

char ch1[N + 1], ch2[N + 1];

int ok(int x)
{
    int a[N], ret = 0;
    while(x)
    {
        if(x & 1) a[ret ++] = 1;
        else a[ret ++] = 0;
        x >>= 1;
    }
    for(int i = 0; i <= ret / 2; i ++)
    {
        if(a[i] != a[ret - 1 - i]) return 0;
    }
    return ret;
}

int main()
{
    int t, n, k;AC.Initialize();AC.Reset();
    for(int i = 1; i < (1 << N); i ++)
    {
        int s = ok(i), ret; ret = s;
        if(s)
        {
            int x = i;ch2[s] = ch1[s] = '\0';
            while(x)
            {
                if(x & 1) ch1[-- s] = '1', ch2[s] = '0';
                else ch1[-- s] = '0', ch2[s] = '1';
                x >>= 1;
            }
            AC.Insert(ch1, ret);AC.Insert(ch2, ret);
        }
    }AC.Construct();
    scanf("%d", &t);
    while(t --)
    {
        scanf("%d%d", &n, &k);
        printf("%d\n", AC.Work(n, k));
    }
}


 类似资料:

相关阅读

相关文章

相关问答