Mac和IOS使用Apple原生BLAS库

邴和雅
2023-12-01

Apple官方提供了Accelerate的Libary,并且官方文档中是swift和Object-C的调用,但是事实上,也可以通过C进行native调用。

因为这些库的头文件目录

/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/System/Library/Frameworks/Accelerate.framework/Versions/Current

这里给出一个例子:

#include <cblas.h>

#include <random>
#include <vector>
#include <iostream>

template<typename T> class matrix {

public: 
  matrix(const size_t& n) : n_(n), data_(n_*n_) {}
  T* data() { return data_.data(); }
  const T* data() const { return data_.data(); }
  std::vector<T>& vec() { return data_; }
  size_t const& n() const { return n_; }
  const std::vector<T>& vec() const { return data_; }

private:
  size_t n_;
  std::vector<T> data_;

};

std::random_device rd;
std::mt19937 gen(rd()); 
std::uniform_real_distribution<> dis(-1.0, 1.0);

template<typename T> matrix<T> random(const size_t& n) {
  matrix<T> m(n);
  std::generate_n(m.vec().begin(), m.vec().size(), std::bind(dis, gen));
  return m;

}

template<typename T> std::ostream& operator<<(std::ostream& o, const matrix<T>& m) {
  auto const n = m.n();
  size_t j = 0;
  for (auto const& i : m.vec()) {    
    o << i <<" ";
    if(j++%n == n-1) o << std::endl;
  }
  return o;
}

int main () {

  const size_t n = 4;
  matrix<float> A = random<float>(n), B = random<float>(n), C(n);
  std::cout << A << std::endl << B << std::endl;

  cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, n, n, n,
              1.0, A.data(), n, B.data(), n, 0.0, C.data(), n);

  std::cout << C << std::endl;
  return 0;
}

编译命令

clang++ -O3 -std=c++11 cblas_test.cpp -I/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks/vecLib.framework/Headers/ -framework Accelerate -o cblas_tes

 类似资料: