当前位置: 首页 > 工具软件 > Magma > 使用案例 >

素因子分解算法python语言_[原创]magma,/PARI/GP中文文档ECC初步:

长孙承嗣
2023-12-01

1

2011-2-10 16:13

Example: Diffie-Hellman key exchange

q := RandomPrime (160: Proof := false);

q;

Ilog2 (q);             2进制位数

repeat

got_it, p := RandomPrime (1024, 1, q, 1000 : Proof := false);

until got_it;

> p;

Ilog2 (p);          2进制位数

tmp := Random(p);

exp := (p - 1) div q;

> g := Modexp (tmp, exp, p);

> g;

Modexp (g, q, p);

A_priv := Random (p-1);

> A_pub := Modexp (g, A_priv, p);

> B_priv := Random (p-1);

> B_pub := Modexp (g, B_priv, p);

> A_sec := Modexp (B_pub, A_priv, p);

> B_sec := Modexp (A_pub, B_priv, p);

A_sec eq B_sec;

A_sec;

1442887065756557081811008885496150418808858816401

159

1651626359469589873102835252970210623774108012103316760123483790491795927792372\

0911163345405386569084216526903485568850519787298376968456439442825925293266689\

5321313697674085713119066460654757154900942213051543220536646001952121896818924\

040862028079007349903890347825426890204440412990981184175301600052642601

1023

8396531707945536590388438602520909841199441225289405372543328552794730731140493\

2359964273401131497951715591859147928675735938983332715282809702511549282280553\

7257551736967439068907583093988590627324758408980681857356806656895703862655226\

21592741188383919546746662841766547810852182714292042706175121823048920

1

true

5144176322605153756984581571117138785000992400326941258925591946874878623433746\

0604279696565409179426210808910383200849384907133032735704943374046999690951643\

2436947000024050385014162242822642019010522453269701147220601715739683999992133\

82708798156652799536437768737718826497886878455615884529095508002441544

Hastad’s broadcast attack on RSA

一种广播攻击RSA,原理是孙子定理,M是明文

1024位的3个不同素因子密匙加密,密文只要三次出现在广播中,就能被还原为明文

函数都有,方便啊

孙子谁知道叫啥名?

N1 := RSAModulus (1024, 3);

N1;

N2 := RSAModulus (1024, 3);

> N2;

N3 := RSAModulus (1024, 3);

> N3;

N1 lt N2;

N2 lt N3;

M := Random (N3);

M;

C1 := Modexp (M, 3, N1);

C2 := Modexp (M, 3, N2);

> C3 := Modexp (M, 3, N3);

> C1;

C2;

C3;

ciphertexts := [C1, C2, C3];

moduli := [N1, N2, N3];

> Cprime := CRT (ciphertexts, moduli);

> Cprime;

Iroot (Cprime, 3);

1191394973498639734758356886734022915243239449328167951285523220116137226774353\

9176019504000834314079698783061932470536725623631410436123478027064344268960243\

7364284793780727456801948423015783019014512753812345243506372098537224435020854\

359848856524899561390988681729562607944000515285564642890387968646827499

1284091640527210186131874393840544095987650982828046236855841544838591571499173\

1866298541100429948705032672190648692663519160856065108275130184865262172800857\

3386565091923148415442237752544661929267855180513383588291450048199800697918748\

507167493425580851595456232294309693917376008568189561641242801970999677

1079659736287944257378805435089043111076737452648956984975669952706815978980298\

6622188200179949052343959127642578022293418583950295309545564738766859693242769\

4693380883751647379784344459796750774988626755269852596427483690743738731140884\

348140421109007063610908180910131454760258796787470341628217212597348237

true

false

1065483725312210764607948804191105051984095256035964212419006647799252157478385\

6334603416677964537633362076010548745454399657943033796697306916247944219685014\

0939319424884142058105500815238082740397639628813948210482176247050158934106124\

746653542454869790679475333470275013517239162467216886783299705473412909

1924084294474065804173347971493633606471329611790262546576596759680624764052803\

5603855496570716546643207106535414986292485635347396779535480273771479179167217\

3693328315426059122287765033711613884956437027782317188733396126117328636526178\

56045629675048923525525556790596952847575213284810439009623226349241181

2376889508979652383834732793528970881037787915415560763427681345964168211539753\

9459811216757749141242641330948276279731548487493134449049621818003288666629642\

7107106879554253057484348013589960001869058474748052966098867953029654679461620\

23532932526818702053588818851843636547054094394130454387535970722272602

9829945919241924969246733746114350726954659414719450874216585166522394276356794\

2155581726235090790726244419011366315696252177358211842671261671704146797693032\

4127009226220296583554431629646178702563947023823646933477546640724280367260704\

60397221620150214727998193463203577893197619215531865820102008407048363

1209596332738531401730087906166277185149003439550896493434779023414176254956043\

2315223272998309692796071291550238017300406144851952116784618699424318350163383\

0623537152218766553695974915925794283159542108168794504904334776472147979805682\

6758534588794554448343265778153818561455153300516738560092882314196842832629908\

0893739204365221773895249374020378141139662196321124225421875676893136477652571\

3686545436735346949304011400137889800182213384268514452639716065687280905474249\

3802438205591679005814273361702058789755016475321682260206347613282853189661176\

9660825254532364209370935104037356711766047967220791151295375750619273595873632\

4374572156522931220632061230921514554158001662097184542577633122532256834871889\

8076147371585186855569055341508199943243209040147941375606027322104397902862026\

8383567305221626770449237160147609033402505962655670767253025758997906062878114\

56219237300141333155757438706370370416335624953661405429

1065483725312210764607948804191105051984095256035964212419006647799252157478385\

6334603416677964537633362076010548745454399657943033796697306916247944219685014\

0939319424884142058105500815238082740397639628813948210482176247050158934106124\

746653542454869790679475333470275013517239162467216886783299705473412909

-----------------------------

http://magma.maths.usyd.edu.au/magma/pdf/examples.pdf

Chapter 28

Elliptic Curve Cryptography

28.5. EXAMPLE: ECDSA------------例子很易懂,但选安全曲线就难了

随机选一次系数a,常数b,X96-2荐a=-3,因为在常规表示和雅可比式变换中,有个表达式a=-3最方便,硬件计算快

p := RandomPrime (100);

> K := GF(p);

E := EllipticCurve ([Random(K), Random(K)]);

E;

p := RandomPrime (100);

> K := GF(p);

E := EllipticCurve ([-3, Random(K)]);

E;

为了选安全曲线, repeat重复选:

p := RandomPrime (100);

> K := GF(p);

> repeat

repeat> E := EllipticCurve ([-3, Random(K)]);

repeat> fo := FactoredOrder (E);---------------要大素数阶

repeat> n := fo[#fo][1];

repeat> until Ilog2 (n) ge 88; ------------------2进制位比域小

> Ilog2 (n);

IsSupersingular(E);-------------------------------要非超奇异,

P=100位,a随机选签名过程

Elliptic Curve defined by y^2 = x^3 + 157135449112378660707313000634*x +

69611886555621063506166355926 over GF(157135449112378660707313000637)

[ <2, 2>, <3, 1>, <7, 2>, <17, 1>, <181, 1>, <2099, 1>, <596447989, 1>,

<69372018557, 1> ]

Elliptic Curve defined by y^2 = x^3 + 157135449112378660707313000634*x +

65388471706181964183230162768 over GF(157135449112378660707313000637)

[ <73, 1>, <55079, 1>, <8304629, 1>, <4705925295986567, 1> ]

Elliptic Curve defined by y^2 = x^3 + 157135449112378660707313000634*x +

126592445929249859850032581477 over GF(157135449112378660707313000637)

[ <5431, 1>, <7687, 1>, <3763894893517636036879, 1> ]

Elliptic Curve defined by y^2 = x^3 + 157135449112378660707313000634*x +

111827571730976256692740142243 over GF(157135449112378660707313000637)

[ <2, 3>, <3, 1>, <17, 1>, <36583, 1>, <10527728854582845299309, 1> ]

Elliptic Curve defined by y^2 = x^3 + 157135449112378660707313000634*x +

147021577696058357454344453248 over GF(157135449112378660707313000637)

[ <2, 1>, <3, 3>, <406169, 1>, <3777283, 1>, <1896680213262977, 1> ]

Elliptic Curve defined by y^2 = x^3 + 157135449112378660707313000634*x +

59756192161956097905575248378 over GF(157135449112378660707313000637)

[ <2, 1>, <3, 1>, <151, 1>, <263, 1>, <617, 1>, <9941, 1>, <107516467533934661,

1> ]

Elliptic Curve defined by y^2 = x^3 + 157135449112378660707313000634*x +

55629840512052832330840836298 over GF(157135449112378660707313000637)

[ <2, 2>, <7, 1>, <151, 1>, <37165432618821789909906481, 1> ]

Elliptic Curve defined by y^2 = x^3 + 157135449112378660707313000634*x +

151057113700827850188583571502 over GF(157135449112378660707313000637)

[ <2, 2>, <11, 1>, <17, 1>, <29, 1>, <640740839, 1>, <11305562359133503, 1> ]

Elliptic Curve defined by y^2 = x^3 + 157135449112378660707313000634*x +

76416094973710013389958980325 over GF(157135449112378660707313000637)

[ <2, 1>, <3, 2>, <7, 1>, <11093, 1>, <112422855763737340508257, 1> ]

Elliptic Curve defined by y^2 = x^3 + 157135449112378660707313000634*x +

139000244472820858413576632031 over GF(157135449112378660707313000637)

[ <2, 2>, <3, 1>, <5, 1>, <37, 1>, <607, 1>, <12746273, 1>, <9148487302593389,

1> ]

Elliptic Curve defined by y^2 = x^3 + 157135449112378660707313000634*x +

66914405844156577851178843582 over GF(157135449112378660707313000637)

[ <3, 1>, <7, 1>, <23, 1>, <8423, 1>, <38624266031016342385927, 1> ]

Elliptic Curve defined by y^2 = x^3 + 157135449112378660707313000634*x +

143325094039473088283650924294 over GF(157135449112378660707313000637)

[ <2, 1>, <3, 1>, <5, 2>, <1047569660749190309106427747, 1> ]

89

false

安全曲线重多,100位下就有上面这些,选好了安全曲线,下面就找了个基点,并求基点的阶,基点更多,安全曲线数*基点数*离散指数------大O,小O,ECC的安全指数可能真是指数级。。。

用的是下面曲线:

y^2 = x^3 + 157135449112378660707313000634*x +

143325094039473088283650924294 over GF(157135449112378660707313000637)

[ <2, 1>, <3, 1>, <5, 2>, <1047569660749190309106427747, 1> ]

n;----------------------------------------------------E中n阶子循环群这

P := Random(E) * (Order(E) div n);        -----找了个基点

P;

Order(P) eq n; -------------------------------------基点的阶

d := Random(n);

Q := d*P;                                        随机选的d

Q;

M := Random(n);                                甲方 要发的明文

> M;

k := Random(n);                                   甲方随机选k

kp_seq := ElementToSequence (k*P);          计算点乘k*P,表示成点

kp_seq;

r := (IntegerRing()!kp_seq[1]) mod n;   不管k*P多大 都要mod n

s := (Modinv (k, n) * (M + d*r)) mod n;   经过求模逆,模乘,模加,签好了

> s;

r in [1..n-1];

s in [1..n-1];

w := Modinv (s, n);                         下面是乙方验证,也要经过求点乘,模逆,模乘,模加

u1 := M*w mod n;

u2 := r*w mod n;

temp := u1*P + u2*Q;

temp;

temp_seq := ElementToSequence (temp);

> v := (IntegerRing()!temp_seq[1]) mod n;

> v;

v eq r;                                                        验证EQUAL,OK

Elliptic Curve defined by y^2 = x^3 + 546406580005247203836151279129*x +

230151935666323598335959051729 over GF(966371258750148727567627105897)

[ <3, 2>, <149, 1>, <720634793997127170564126541, 1> ]三个循环子群,,经过上面REPEAT选,已知攻击都被棑除,阶720634793997127170564126541的中的点安全,循环子群点阶如过恰=曲线阶,会被多项式级的同构攻击。不过恰=可能性太小了

89

false

720634793997127170564126541

(156817043070046010480672869099 : 138406249392994102180675488148 : 1)基点座标

true

(823452749814859867769709264217 : 409839153103190558971036321686 : 1)

314368839904612579301554984    计算点乘d*P;

[ 750750203409670127154353456215, 274010688382591384982046792082, 1 ]

337341060791448293483425930          明文,已被表示成曲线的点,明文,域元素,曲线点可互相转化。X9-62里有,有三种形式,不太难懂,这ElementToSequence函数一定包括了这功能

true

true

(750750203409670127154353456215 : 274010688382591384982046792082 : 1)

569382858660742597097727034       计算点乘  k*P

true

下面P=100位,a=-3签名过程:

Elliptic Curve defined by y^2 = x^3 + 344566048772404937900222995696*x +

122613265914087061833345770776 over GF(344566048772404937900222995699)

[ <2, 4>, <173, 1>, <70009, 1>, <1778085018158714891237, 1> ]

Elliptic Curve defined by y^2 = x^3 + 344566048772404937900222995696*x +

44333872090216421338353867400 over GF(344566048772404937900222995699)

[ <108421, 1>, <189401, 1>, <16779414654143966807, 1> ]

Elliptic Curve defined by y^2 = x^3 + 344566048772404937900222995696*x +

168372939479581669368060393010 over GF(344566048772404937900222995699)

[ <2, 2>, <5, 1>, <41, 1>, <420202498502932494553451531, 1> ]

88

false

420202498502932494553451531

(19629684444028095682059018614 : 313332333218081159316329285802 : 1)

true

(185904318135579502698063049655 : 337526345404850851784130027470 : 1)

210595421815090177972701173

[ 71071577049370184377915299896, 30419639182367625537958244039, 1 ]

178411782669416518303895082

true

true

(71071577049370184377915299896 : 30419639182367625537958244039 : 1)

57354802374592798381991157

true

估记最少得把序,扩域多项式环搞透才能下面

http://magma.maths.usyd.edu.au/magma/pdf/examples.pdf

格攻击

Chapter 29

LLL and Lattice Based Ciphers

格密码

Chapter 33

Miscellaneous

NTRU

 类似资料: