#! https://zhuanlan.zhihu.com/p/391021814
本文为Apollo感知融合源码阅读笔记,建议参照Apollo6.0源码阅读本文,水平有限,有错误的地方希望大佬多加指正!
个人代码注释链接: leox24 / perception_learn
主要是radar检测的框架代码,其实并没有什么核心内容…
具体也就是融合的那一套东西,预处理,关联匹配,跟踪,虽然radar有写滤波器adaptive kalman,但是实际上并没有用。
.
├── app
│ ├── BUILD
│ ├── radar_obstacle_perception.cc //框架实现
│ └── radar_obstacle_perception.h
├── common
│ ├── BUILD
│ ├── radar_util.cc
│ ├── radar_util.h
│ └── types.h
└── lib
├── detector
├── dummy
├── interface
├── preprocessor
├── roi_filter
└── tracker
在Apollo/modules/perception/production/launch
并没有单独的启动radar的launch文件,也没有单一的dag文件,雷达组件的定义都在融合的dag文件中Apollo/modules/perception/production/dag/dag_streaming_perception.dag
。
components {
class_name: "RadarDetectionComponent"
config {
name: "FrontRadarDetection"
config_file_path: "/apollo/modules/perception/production/conf/perception/radar/front_radar_component_conf.pb.txt"
readers {
channel: "/apollo/sensor/radar/front"
}
}
}
components {
class_name: "RadarDetectionComponent"
config {
name: "RearRadarDetection"
config_file_path: "/apollo/modules/perception/production/conf/perception/radar/rear_radar_component_conf.pb.txt"
readers {
channel: "/apollo/sensor/radar/rear"
}
}
}
可见radar的组件类是RadarDetectionComponent
,分别对前雷达和后雷达进行处理。
Apollo/modules/perception/onboard/component/radar_detection_component.cc
radar_name: "radar_front"
tf_child_frame_id: "radar_front"
radar_forward_distance: 200.0
radar_preprocessor_method: "ContiArsPreprocessor"
radar_perception_method: "RadarObstaclePerception"
radar_pipeline_name: "FrontRadarPipeline"
odometry_channel_name: "/apollo/localization/pose"
output_channel_name: "/perception/inner/PrefusedObjects"
radar_name: "radar_rear"
tf_child_frame_id: "radar_rear"
radar_forward_distance: 120.0
radar_preprocessor_method: "ContiArsPreprocessor"
radar_perception_method: "RadarObstaclePerception"
radar_pipeline_name: "RearRadarPipeline"
odometry_channel_name: "/apollo/localization/pose"
output_channel_name: "/perception/inner/PrefusedObjects"
FLAGS_obs_enable_hdmap_input=true
ContiRadar
原始radar信息SensorFrameMessage
radar处理结果Preprocess,Perceive
,下文展开介绍预处理和核心处理函数。bool RadarDetectionComponent::InternalProc(
const std::shared_ptr<ContiRadar>& in_message,
std::shared_ptr<SensorFrameMessage> out_message) {
// 初始化预处理参数
// Init preprocessor_options
radar::PreprocessorOptions preprocessor_options;
// 预处理结果
ContiRadar corrected_obstacles;
// 预处理
radar_preprocessor_->Preprocess(raw_obstacles, preprocessor_options,
&corrected_obstacles);
PERF_BLOCK_END_WITH_INDICATOR(radar_info_.name, "radar_preprocessor");
timestamp = corrected_obstacles.header().timestamp_sec();
out_message->timestamp_ = timestamp;
out_message->seq_num_ = seq_num_;
out_message->process_stage_ = ProcessStage::LONG_RANGE_RADAR_DETECTION;
out_message->sensor_id_ = radar_info_.name;
// 初始化参数:radar2world转换矩阵,radar2自车转换矩阵、自车线速度和角速度
// Init radar perception options
radar::RadarPerceptionOptions options;
options.sensor_name = radar_info_.name;
// Init detector_options
Eigen::Affine3d radar_trans;
// radar2world的转换矩阵
if (!radar2world_trans_.GetSensor2worldTrans(timestamp, &radar_trans)) {
out_message->error_code_ = apollo::common::ErrorCode::PERCEPTION_ERROR_TF;
AERROR << "Failed to get pose at time: " << timestamp;
return true;
}
Eigen::Affine3d radar2novatel_trans;
// radar2自车的转换矩阵
if (!radar2novatel_trans_.GetTrans(timestamp, &radar2novatel_trans, "novatel",
tf_child_frame_id_)) {
out_message->error_code_ = apollo::common::ErrorCode::PERCEPTION_ERROR_TF;
AERROR << "Failed to get radar2novatel trans at time: " << timestamp;
return true;
}
PERF_BLOCK_END_WITH_INDICATOR(radar_info_.name, "GetSensor2worldTrans");
Eigen::Matrix4d radar2world_pose = radar_trans.matrix();
options.detector_options.radar2world_pose = &radar2world_pose;
Eigen::Matrix4d radar2novatel_trans_m = radar2novatel_trans.matrix();
options.detector_options.radar2novatel_trans = &radar2novatel_trans_m;
// 自车车速
if (!GetCarLocalizationSpeed(timestamp,
&(options.detector_options.car_linear_speed),
&(options.detector_options.car_angular_speed))) {
AERROR << "Failed to call get_car_speed. [timestamp: " << timestamp;
// return false;
}
PERF_BLOCK_END_WITH_INDICATOR(radar_info_.name, "GetCarSpeed");
// Init roi_filter_options
// radar到world的T矩阵偏移量
base::PointD position;
position.x = radar_trans(0, 3);
position.y = radar_trans(1, 3);
position.z = radar_trans(2, 3);
options.roi_filter_options.roi.reset(new base::HdmapStruct());
if (FLAGS_obs_enable_hdmap_input) {
hdmap_input_->GetRoiHDMapStruct(position, radar_forward_distance_,
options.roi_filter_options.roi);
}
PERF_BLOCK_END_WITH_INDICATOR(radar_info_.name, "GetRoiHDMapStruct");
// Init object_filter_options
// Init track_options
// Init object_builder_options
// 处理预处理后的radar obj
std::vector<base::ObjectPtr> radar_objects;
if (!radar_perception_->Perceive(corrected_obstacles, options,
&radar_objects)) {
out_message->error_code_ =
apollo::common::ErrorCode::PERCEPTION_ERROR_PROCESS;
AERROR << "RadarDetector Proc failed.";
return true;
}
out_message->frame_.reset(new base::Frame());
out_message->frame_->sensor_info = radar_info_;
out_message->frame_->timestamp = timestamp;
out_message->frame_->sensor2world_pose = radar_trans;
out_message->frame_->objects = radar_objects;
return true;
}
Apollo/modules/perception/radar/lib/preprocessor/conti_ars_preprocessor/conti_ars_preprocessor.cc
跳过不在时间范围内的目标,重新分配ID,修正时间戳(减去0.07)
三个步骤。个人觉得这个预处理是跟传感器数据的特征有关的,不同传感器有不同的预处理方法(经验),对我来说并没有什么参考价值。感兴趣的可以看我的注释代码,我就不展开阐述了。// 雷达预处理
bool ContiArsPreprocessor::Preprocess(
const drivers::ContiRadar& raw_obstacles,
const PreprocessorOptions& options,
drivers::ContiRadar* corrected_obstacles) {
PERF_FUNCTION();
SkipObjects(raw_obstacles, corrected_obstacles);
ExpandIds(corrected_obstacles);
CorrectTime(corrected_obstacles);
return true;
}
Apollo/modules/perception/radar/app/radar_obstacle_perception.cc
检测,ROI过滤,跟踪
三个步骤。bool RadarObstaclePerception::Perceive(
const drivers::ContiRadar& corrected_obstacles,
const RadarPerceptionOptions& options,
std::vector<base::ObjectPtr>* objects) {
base::FramePtr detect_frame_ptr(new base::Frame());
// 检测 ContiArsDetector
if (!detector_->Detect(corrected_obstacles, options.detector_options,
detect_frame_ptr)) {
AERROR << "radar detect error";
return false;
}
// ROI过滤 HdmapRadarRoiFilter
if (!roi_filter_->RoiFilter(options.roi_filter_options, detect_frame_ptr)) {
ADEBUG << "All radar objects were filtered out";
}
base::FramePtr tracker_frame_ptr(new base::Frame);
// 跟踪 ContiArsTracker
if (!tracker_->Track(*detect_frame_ptr, options.track_options,
tracker_frame_ptr)) {
AERROR << "radar track error";
return false;
}
*objects = tracker_frame_ptr->objects;
return true;
}
Apollo/modules/perception/radar/lib/detector/conti_ars_detector/conti_ars_detector.cc
说是检测,其实是对传感器数据的处理,radar2world
和radar2自车
的坐标系转换,相对速度和绝对速度的转换,运动状态、类别等属性的赋值,这部分对做radar的是可以有一定参考的。
其中需要注意的是转换速度时,需要补偿自车转弯旋转导致的速度变化,就是在radar速度的xy分量上补偿掉自车角速度带来的速度。
void ContiArsDetector::RawObs2Frame(
const drivers::ContiRadar& corrected_obstacles,
const DetectorOptions& options, base::FramePtr radar_frame) {
// radar2world转换矩阵
const Eigen::Matrix4d& radar2world = *(options.radar2world_pose);
// radar到自车转换矩阵
const Eigen::Matrix4d& radar2novatel = *(options.radar2novatel_trans);
// 自车角速度,应该是xyz三个方向上的角速度,应该只有转弯时的yawrate
const Eigen::Vector3f& angular_speed = options.car_angular_speed;
Eigen::Matrix3d rotation_novatel;
rotation_novatel << 0, -angular_speed(2), angular_speed(1), angular_speed(2),
0, -angular_speed(0), -angular_speed(1), angular_speed(0), 0;
// 补偿自车转弯旋转时的速度变化。
Eigen::Matrix3d rotation_radar = radar2novatel.topLeftCorner(3, 3).inverse() *
rotation_novatel *
radar2novatel.topLeftCorner(3, 3);
Eigen::Matrix3d radar2world_rotate = radar2world.block<3, 3>(0, 0);
Eigen::Matrix3d radar2world_rotate_t = radar2world_rotate.transpose();
// Eigen::Vector3d radar2world_translation = radar2world.block<3, 1>(0, 3);
ADEBUG << "radar2novatel: " << radar2novatel;
ADEBUG << "angular_speed: " << angular_speed;
ADEBUG << "rotation_radar: " << rotation_radar;
for (const auto radar_obs : corrected_obstacles.contiobs()) {
base::ObjectPtr radar_object(new base::Object);
radar_object->id = radar_obs.obstacle_id();
radar_object->track_id = radar_obs.obstacle_id();
// 局部位姿
Eigen::Vector4d local_loc(radar_obs.longitude_dist(),
radar_obs.lateral_dist(), 0, 1);
// 世界位姿
Eigen::Vector4d world_loc =
static_cast<Eigen::Matrix<double, 4, 1, 0, 4, 1>>(radar2world *
local_loc);
// 世界坐标系下的xy,z=0
radar_object->center = world_loc.block<3, 1>(0, 0);
radar_object->anchor_point = radar_object->center;
// 相对速度
Eigen::Vector3d local_vel(radar_obs.longitude_vel(),
radar_obs.lateral_vel(), 0);
// 补偿自车转弯旋转时的速度变化。雷达的相对速度的xy分量,加减自车转弯的xy速度分量
Eigen::Vector3d angular_trans_speed =
rotation_radar * local_loc.topLeftCorner(3, 1);
Eigen::Vector3d world_vel =
static_cast<Eigen::Matrix<double, 3, 1, 0, 3, 1>>(
radar2world_rotate * (local_vel + angular_trans_speed));
// 绝对速度
Eigen::Vector3d vel_temp =
world_vel + options.car_linear_speed.cast<double>();
radar_object->velocity = vel_temp.cast<float>();
Eigen::Matrix3d dist_rms;
dist_rms.setZero();
Eigen::Matrix3d vel_rms;
vel_rms.setZero();
// rms是均方根,但这里可能是指方差相关?
dist_rms(0, 0) = radar_obs.longitude_dist_rms();
dist_rms(1, 1) = radar_obs.lateral_dist_rms();
vel_rms(0, 0) = radar_obs.longitude_vel_rms();
vel_rms(1, 1) = radar_obs.lateral_vel_rms();
// 计算位置不确定性
radar_object->center_uncertainty =
(radar2world_rotate * dist_rms * dist_rms.transpose() *
radar2world_rotate_t)
.cast<float>();
// 计算速度不确定性
radar_object->velocity_uncertainty =
(radar2world_rotate * vel_rms * vel_rms.transpose() *
radar2world_rotate_t)
.cast<float>();
double local_obj_theta = radar_obs.oritation_angle() / 180.0 * PI;
Eigen::Vector3f direction(static_cast<float>(cos(local_obj_theta)),
static_cast<float>(sin(local_obj_theta)), 0.0f);
// 方向和角度
direction = radar2world_rotate.cast<float>() * direction;
radar_object->direction = direction;
radar_object->theta = std::atan2(direction(1), direction(0));
radar_object->theta_variance =
static_cast<float>(radar_obs.oritation_angle_rms() / 180.0 * PI);
radar_object->confidence = static_cast<float>(radar_obs.probexist());
// 运动状态:运动、静止、未知
// 目标置信度
int motion_state = radar_obs.dynprop();
double prob_target = radar_obs.probexist();
if ((prob_target > MIN_PROBEXIST) &&
(motion_state == CONTI_MOVING || motion_state == CONTI_ONCOMING ||
motion_state == CONTI_CROSSING_MOVING)) {
radar_object->motion_state = base::MotionState::MOVING;
} else if (motion_state == CONTI_DYNAMIC_UNKNOWN) {
radar_object->motion_state = base::MotionState::UNKNOWN;
} else {
radar_object->motion_state = base::MotionState::STATIONARY;
radar_object->velocity.setZero();
}
// 类别
int cls = radar_obs.obstacle_class();
if (cls == CONTI_CAR || cls == CONTI_TRUCK) {
radar_object->type = base::ObjectType::VEHICLE;
} else if (cls == CONTI_PEDESTRIAN) {
radar_object->type = base::ObjectType::PEDESTRIAN;
} else if (cls == CONTI_MOTOCYCLE || cls == CONTI_BICYCLE) {
radar_object->type = base::ObjectType::BICYCLE;
} else {
radar_object->type = base::ObjectType::UNKNOWN;
}
// 长宽高
radar_object->size(0) = static_cast<float>(radar_obs.length());
radar_object->size(1) = static_cast<float>(radar_obs.width());
radar_object->size(2) = 2.0f; // vehicle template (pnc required)
if (cls == CONTI_POINT) {
radar_object->size(0) = 1.0f;
radar_object->size(1) = 1.0f;
}
// extreme case protection
if (radar_object->size(0) * radar_object->size(1) < 1.0e-4) {
if (cls == CONTI_CAR || cls == CONTI_TRUCK) {
radar_object->size(0) = 4.0f;
radar_object->size(1) = 1.6f; // vehicle template
} else {
radar_object->size(0) = 1.0f;
radar_object->size(1) = 1.0f;
}
}
MockRadarPolygon(radar_object);
float local_range = static_cast<float>(local_loc.head(2).norm());
float local_angle =
static_cast<float>(std::atan2(local_loc(1), local_loc(0)));
radar_object->radar_supplement.range = local_range;
radar_object->radar_supplement.angle = local_angle;
radar_frame->objects.push_back(radar_object);
}
}
Apollo/modules/perception/radar/lib/roi_filter/hdmap_radar_roi_filter/hdmap_radar_roi_filter.cc
和lidar的处理一样,过滤掉ROI区域的目标。
bool HdmapRadarRoiFilter::RoiFilter(const RoiFilterOptions& options,
base::FramePtr radar_frame) {
// 滤除Roi范围外的障碍物
std::vector<base::ObjectPtr> origin_objects = radar_frame->objects;
return common::ObjectInRoiCheck(options.roi, origin_objects,
&radar_frame->objects);
}
Apollo/modules/perception/radar/lib/tracker/conti_ars_tracker/conti_ars_tracker.cc
跟踪也就是经典的关联,匹配,更新。
关联值只使用了距离计算,匹配使用了ID匹配和匈牙利匹配,更新则是直接更新,没有使用滤波
void ContiArsTracker::TrackObjects(const base::Frame &radar_frame) {
std::vector<TrackObjectPair> assignments;
std::vector<size_t> unassigned_tracks;
std::vector<size_t> unassigned_objects;
TrackObjectMatcherOptions matcher_options;
const auto &radar_tracks = track_manager_->GetTracks();
// 关联匹配
matcher_->Match(radar_tracks, radar_frame, matcher_options, &assignments,
&unassigned_tracks, &unassigned_objects);
// 更新四步骤:更新匹配的,更新未匹配的,删除丢失的,创建新的
UpdateAssignedTracks(radar_frame, assignments);
// 超过0.06秒设置为死亡
UpdateUnassignedTracks(radar_frame, unassigned_tracks);
DeleteLostTracks();
CreateNewTracks(radar_frame, unassigned_objects);
}
HMMatcher
是BaseMatcher
的派生类,IDMatch()
是基类的实现,而在IDMatch()
中有个RefinedTrack()
是派生类重写了的,会调用派生类的RefinedTrack()
。bool HMMatcher::Match(const std::vector<RadarTrackPtr> &radar_tracks,
const base::Frame &radar_frame,
const TrackObjectMatcherOptions &options,
std::vector<TrackObjectPair> *assignments,
std::vector<size_t> *unassigned_tracks,
std::vector<size_t> *unassigned_objects) {
// ID匹配,相同id且距离小于2.5直接匹配上
IDMatch(radar_tracks, radar_frame, assignments, unassigned_tracks,
unassigned_objects);
// 计算关联值,匈牙利匹配
TrackObjectPropertyMatch(radar_tracks, radar_frame, assignments,
unassigned_tracks, unassigned_objects);
return true;
}
void HMMatcher::TrackObjectPropertyMatch(
const std::vector<RadarTrackPtr> &radar_tracks,
const base::Frame &radar_frame, std::vector<TrackObjectPair> *assignments,
std::vector<size_t> *unassigned_tracks,
std::vector<size_t> *unassigned_objects) {
if (unassigned_tracks->empty() || unassigned_objects->empty()) {
return;
}
std::vector<std::vector<double>> association_mat(unassigned_tracks->size());
for (size_t i = 0; i < association_mat.size(); ++i) {
association_mat[i].resize(unassigned_objects->size(), 0);
}
// 计算关联矩阵
ComputeAssociationMat(radar_tracks, radar_frame, *unassigned_tracks,
*unassigned_objects, &association_mat);
// from perception-common
common::SecureMat<double> *global_costs =
hungarian_matcher_.mutable_global_costs();
global_costs->Resize(unassigned_tracks->size(), unassigned_objects->size());
for (size_t i = 0; i < unassigned_tracks->size(); ++i) {
for (size_t j = 0; j < unassigned_objects->size(); ++j) {
(*global_costs)(i, j) = association_mat[i][j];
}
}
std::vector<TrackObjectPair> property_assignments;
std::vector<size_t> property_unassigned_tracks;
std::vector<size_t> property_unassigned_objects;
// 匈牙利匹配,和fusion一样
hungarian_matcher_.Match(
BaseMatcher::GetMaxMatchDistance(), BaseMatcher::GetBoundMatchDistance(),
common::GatedHungarianMatcher<double>::OptimizeFlag::OPTMIN,
&property_assignments, &property_unassigned_tracks,
&property_unassigned_objects);
...(省略)
}
radar这里的关联值的距离计算了两次,然后取了平均。分别用了上一帧和当前帧的速度做预测。
// 计算航迹往前预测和观测的中心点距离
double distance_forward = DistanceBetweenObs(
track_object, track_timestamp, frame_object, frame_timestamp);
// 计算观测往后预测和航迹的中心点距离
double distance_backward = DistanceBetweenObs(
frame_object, frame_timestamp, track_object, track_timestamp);
association_mat->at(i).at(j) =
0.5 * distance_forward + 0.5 * distance_backward;
adaptive kalman
,但是并没有使用滤波器,而是直接用观测量做了更新,猜测可能是传感器供应商已经做好了跟踪。简单看了下adaptive kalman
,好像也就是CV模型的KF。radar模块的处理并没有很多,所以也没有很详细的写,有兴趣可以自己看看,大多是比较简单的实现。
欢迎指正~