当前位置: 首页 > 工具软件 > Young > 使用案例 >

Eckart-Young-Mirsky theorem

叶俊郎
2023-12-01

定理:

(The Eckhart-Young Theorem) If k < r = r a n k ( A ) k<r = rank(A) k<r=rank(A) and
A k = ∑ i = 1 k σ i μ i ν i ⊤ A_k=\sum_{i=1}^k \sigma_i\mu_i\nu_i^{\top} Ak=i=1kσiμiνi
then
min ⁡ r a n k ( B ) = k ∣ ∣ A − B ∣ ∣ 2 = ∣ ∣ A − A k ∣ ∣ 2 = σ k + 1 \min_{rank(B)=k} ||A-B||_2=||A-A_k||_2=\sigma_{k+1} rank(B)=kminAB2=AAk2=σk+1

证明:
Since U ⊤ A k V = d i a g ( σ 1 , ⋯   , σ k , 0 , ⋯   , 0 ) U^{\top}A_kV=diag(\sigma_1,\cdots,\sigma_k,0,\cdots,0) UAkV=diag(σ1,,σk,0,,0) it follows that A k A_k Ak is rank k. Moreover, U ⊤ ( A − A k ) V = d i a g ( 0 , ⋯   , 0 , σ k + 1 , ⋯   , σ p ) U^{\top}(A-A_k)V=diag(0,\cdots,0,\sigma_{k+1},\cdots,\sigma_p) U(AAk)V=diag(0,,0,σk+1,,σp) and so ∣ ∣ A − A k ∣ ∣ 2 = σ k + 1 ||A-A_k||_2=\sigma_{k+1} AAk2=σk+1.
Now suppose r a n k ( B ) = k rank(B) = k rank(B)=k for some B ∈ R m × n B\in \mathbb{R}^{m\times n} BRm×n. It follows that we can find orthonormal vectors x 1 , . . . , x n − k x_1 , ... , x_{n-k} x1,...,xnk so n u l l ( B ) = s p a n { x 1 , . . . , x n − k } null (B) = span\{x_1 , ... , x_{n-k}\} null(B)=span{x1,...,xnk}· A dimension argument shows that
span { x 1 , ⋯   , x n − k } ∩ span { v 1 , ⋯   , v k + 1 } ≠ { 0 } . \text{span}\{x_1,\cdots,x_{n-k}\}\cap\text{span}\{v_1,\cdots,v_{k+1}\}\neq\{0\}. span{x1,,xnk}span{v1,,vk+1}={0}.
Let z be a unit 2-norm vector in this intersection. Since B z = 0 Bz = 0 Bz=0 and
A z = ∑ i = 1 k + 1 σ i ( v i ⊤ z ) u i , Az=\sum_{i=1}^{k+1}\sigma_i(v_i^{\top}z)u_i, Az=i=1k+1σi(viz)ui,
we have
∣ ∣ A − B ∣ ∣ 2 2 ≥ ∣ ∣ ( A − B ) z ∣ ∣ 2 2 = ∣ ∣ A z ∣ ∣ 2 2 = ∑ i = 1 k + 1 σ i 2 ( v i ⊤ z ) 2 ≥ σ k + 1 2 ||A-B||_2^2\geq||(A-B)z||_2^2=||Az||_2^2=\sum_{i=1}^{k+1}\sigma_i^2(v_i^{\top}z)^2\geq\sigma_{k+1}^2 AB22(AB)z22=Az22=i=1k+1σi2(viz)2σk+12
completing the proof of the theorem.

 类似资料: