跳一跳python源码下载_微信跳一跳python代码实现

沈思博
2023-12-01

本文实例为大家分享了python微信跳一跳的具体代码,供大家参考,具体内容如下

部分代码分享:

wechat_jump.py

from __future__ import print_function

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.animation as animation

import math

import time

import os

import cv2

import datetime

scale = 0.25

template = cv2.imread('character.png')

template = cv2.resize(template, (0, 0), fx=scale, fy=scale)

template_size = template.shape[:2]

def search(img):

result = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)

cv2.rectangle(img, (min_loc[0], min_loc[1]), (min_loc[0] + template_size[1], min_loc[1] + template_size[0]), (255, 0, 0), 4)

return img, min_loc[0] + template_size[1] / 2, min_loc[1] + template_size[0]

def pull_screenshot():

filename = datetime.datetime.now().strftime("%H%M%S") + '.png'

os.system('mv autojump.png {}'.format(filename))

os.system('adb shell screencap -p /sdcard/autojump.png')

os.system('adb pull /sdcard/autojump.png .')

def jump(distance):

press_time = distance * 1.35

press_time = int(press_time)

cmd = 'adb shell input swipe 320 410 320 410 ' + str(press_time)

print(cmd)

os.system(cmd)

def update_data():

global src_x, src_y

img = cv2.imread('autojump.png')

img = cv2.resize(img, (0, 0), fx=scale, fy=scale)

img, src_x, src_y = search(img)

return img

fig = plt.figure()

index = 0

# pull_screenshot()

img = update_data()

update = True

im = plt.imshow(img, animated=True)

def updatefig(*args):

global update

if update:

time.sleep(1)

pull_screenshot()

im.set_array(update_data())

update = False

return im,

def onClick(event):

global update

global src_x, src_y

dst_x, dst_y = event.xdata, event.ydata

distance = (dst_x - src_x)**2 + (dst_y - src_y)**2

distance = (distance ** 0.5) / scale

print('distance = ', distance)

jump(distance)

update = True

fig.canvas.mpl_connect('button_press_event', onClick)

ani = animation.FuncAnimation(fig, updatefig, interval=5, blit=True)

plt.show()

wechat_jump_auto.py

# coding: utf-8

import os

import sys

import subprocess

import shutil

import time

import math

from PIL import Image, ImageDraw

import random

import json

import re

# === 思路 ===

# 核心:每次落稳之后截图,根据截图算出棋子的坐标和下一个块顶面的中点坐标,

# 根据两个点的距离乘以一个时间系数获得长按的时间

# 识别棋子:靠棋子的颜色来识别位置,通过截图发现最下面一行大概是一条直线,就从上往下一行一行遍历,

# 比较颜色(颜色用了一个区间来比较)找到最下面的那一行的所有点,然后求个中点,

# 求好之后再让 Y 轴坐标减小棋子底盘的一半高度从而得到中心点的坐标

# 识别棋盘:靠底色和方块的色差来做,从分数之下的位置开始,一行一行扫描,由于圆形的块最顶上是一条线,

# 方形的上面大概是一个点,所以就用类似识别棋子的做法多识别了几个点求中点,

# 这时候得到了块中点的 X 轴坐标,这时候假设现在棋子在当前块的中心,

# 根据一个通过截图获取的固定的角度来推出中点的 Y 坐标

# 最后:根据两点的坐标算距离乘以系数来获取长按时间(似乎可以直接用 X 轴距离)

# TODO: 解决定位偏移的问题

# TODO: 看看两个块中心到中轴距离是否相同,如果是的话靠这个来判断一下当前超前还是落后,便于矫正

# TODO: 一些固定值根据截图的具体大小计算

# TODO: 直接用 X 轴距离简化逻辑

def open_accordant_config():

screen_size = _get_screen_size()

config_file = "{path}/config/{screen_size}/config.json".format(

path=sys.path[0],

screen_size=screen_size

)

if os.path.exists(config_file):

with open(config_file, 'r') as f:

print("Load config file from {}".format(config_file))

return json.load(f)

else:

with open('{}/config/default.json'.format(sys.path[0]), 'r') as f:

print("Load default config")

return json.load(f)

def _get_screen_size():

size_str = os.popen('adb shell wm size').read()

if not size_str:

print('请安装ADB及驱动并配置环境变量')

sys.exit()

m = re.search('(\d+)x(\d+)', size_str)

if m:

width = m.group(1)

height = m.group(2)

return "{height}x{width}".format(height=height, width=width)

config = open_accordant_config()

# Magic Number,不设置可能无法正常执行,请根据具体截图从上到下按需设置

under_game_score_y = config['under_game_score_y']

press_coefficient = config['press_coefficient'] # 长按的时间系数,请自己根据实际情况调节

piece_base_height_1_2 = config['piece_base_height_1_2'] # 二分之一的棋子底座高度,可能要调节

piece_body_width = config['piece_body_width'] # 棋子的宽度,比截图中量到的稍微大一点比较安全,可能要调节

# 模拟按压的起始点坐标,需要自动重复游戏请设置成“再来一局”的坐标

if config.get('swipe'):

swipe = config['swipe']

else:

swipe = {}

#设置模拟按压各项参数,经过多台手机测试,其中2160x1080建议调整参数为320,1210,720,910

#使用vivox20,夏普全面屏和小米mix2测试过,均可达到2000+分数(记得在开发者设置打开usb安全验证)

swipe['x1'], swipe['y1'], swipe['x2'], swipe['y2'] = 320, 410, 320, 410

screenshot_way = 2

screenshot_backup_dir = 'screenshot_backups/'

if not os.path.isdir(screenshot_backup_dir):

os.mkdir(screenshot_backup_dir)

def pull_screenshot():

global screenshot_way

# 新的方法请根据效率及适用性由高到低排序

if screenshot_way == 2 or screenshot_way == 1:

process = subprocess.Popen('adb shell screencap -p', shell=True, stdout=subprocess.PIPE)

screenshot = process.stdout.read()

if screenshot_way == 2:

binary_screenshot = screenshot.replace(b'\r\n', b'\n')

else:

binary_screenshot = screenshot.replace(b'\r\r\n', b'\n')

f = open('autojump.png', 'wb')

f.write(binary_screenshot)

f.close()

elif screenshot_way == 0:

os.system('adb shell screencap -p /sdcard/autojump.png')

os.system('adb pull /sdcard/autojump.png .')

def backup_screenshot(ts):

# 为了方便失败的时候 debug

if not os.path.isdir(screenshot_backup_dir):

os.mkdir(screenshot_backup_dir)

shutil.copy('autojump.png', '{}{}.png'.format(screenshot_backup_dir, ts))

def save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y):

draw = ImageDraw.Draw(im)

# 对debug图片加上详细的注释

draw.line((piece_x, piece_y) + (board_x, board_y), fill=2, width=3)

draw.line((piece_x, 0, piece_x, im.size[1]), fill=(255, 0, 0))

draw.line((0, piece_y, im.size[0], piece_y), fill=(255, 0, 0))

draw.line((board_x, 0, board_x, im.size[1]), fill=(0, 0, 255))

draw.line((0, board_y, im.size[0], board_y), fill=(0, 0, 255))

draw.ellipse((piece_x - 10, piece_y - 10, piece_x + 10, piece_y + 10), fill=(255, 0, 0))

draw.ellipse((board_x - 10, board_y - 10, board_x + 10, board_y + 10), fill=(0, 0, 255))

del draw

im.save('{}{}_d.png'.format(screenshot_backup_dir, ts))

def set_button_position(im):

# 将swipe设置为 `再来一局` 按钮的位置

global swipe_x1, swipe_y1, swipe_x2, swipe_y2

w, h = im.size

left = w / 2

top = int(1584 * (h / 1920.0))

swipe_x1, swipe_y1, swipe_x2, swipe_y2 = left, top, left, top

def jump(distance):

press_time = distance * press_coefficient

press_time = max(press_time, 200) # 设置 200 ms 是最小的按压时间

press_time = int(press_time)

cmd = 'adb shell input swipe {x1} {y1} {x2} {y2} {duration}'.format(

x1=swipe_x1,

y1=swipe_y1,

x2=swipe_x2,

y2=swipe_y2,

duration=press_time

)

print(cmd)

os.system(cmd)

return press_time

def find_piece_and_board(im):

w, h = im.size

piece_x_sum = 0

piece_x_c = 0

piece_y_max = 0

board_x = 0

board_y = 0

scan_x_border = int(w / 8) # 扫描棋子时的左右边界

scan_start_y = 0 # 扫描的起始y坐标

im_pixel=im.load()

# 以50px步长,尝试探测scan_start_y

for i in range(int(h / 3), int( h*2 /3 ), 50):

last_pixel = im_pixel[0,i]

for j in range(1, w):

pixel=im_pixel[j,i]

# 不是纯色的线,则记录scan_start_y的值,准备跳出循环

if pixel[0] != last_pixel[0] or pixel[1] != last_pixel[1] or pixel[2] != last_pixel[2]:

scan_start_y = i - 50

break

if scan_start_y:

break

print('scan_start_y: ', scan_start_y)

# 从scan_start_y开始往下扫描,棋子应位于屏幕上半部分,这里暂定不超过2/3

for i in range(scan_start_y, int(h * 2 / 3)):

for j in range(scan_x_border, w - scan_x_border): # 横坐标方面也减少了一部分扫描开销

pixel = im_pixel[j,i]

# 根据棋子的最低行的颜色判断,找最后一行那些点的平均值,这个颜色这样应该 OK,暂时不提出来

if (50 < pixel[0] < 60) and (53 < pixel[1] < 63) and (95 < pixel[2] < 110):

piece_x_sum += j

piece_x_c += 1

piece_y_max = max(i, piece_y_max)

if not all((piece_x_sum, piece_x_c)):

return 0, 0, 0, 0

piece_x = int(piece_x_sum / piece_x_c);

piece_y = piece_y_max - piece_base_height_1_2 # 上移棋子底盘高度的一半

#限制棋盘扫描的横坐标,避免音符bug

if piece_x < w/2:

board_x_start = piece_x

board_x_end = w

else:

board_x_start = 0

board_x_end = piece_x

for i in range(int(h / 3), int(h * 2 / 3)):

last_pixel = im_pixel[0, i]

if board_x or board_y:

break

board_x_sum = 0

board_x_c = 0

for j in range(int(board_x_start), int(board_x_end)):

pixel = im_pixel[j,i]

# 修掉脑袋比下一个小格子还高的情况的 bug

if abs(j - piece_x) < piece_body_width:

continue

# 修掉圆顶的时候一条线导致的小 bug,这个颜色判断应该 OK,暂时不提出来

if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) > 10:

board_x_sum += j

board_x_c += 1

if board_x_sum:

board_x = board_x_sum / board_x_c

last_pixel=im_pixel[board_x,i]

#从上顶点往下+274的位置开始向上找颜色与上顶点一样的点,为下顶点

#该方法对所有纯色平面和部分非纯色平面有效,对高尔夫草坪面、木纹桌面、药瓶和非菱形的碟机(好像是)会判断错误

for k in range(i+274, i, -1): #274取开局时最大的方块的上下顶点距离

pixel = im_pixel[board_x,k]

if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) < 10:

break

board_y = int((i+k) / 2)

#如果上一跳命中中间,则下个目标中心会出现r245 g245 b245的点,利用这个属性弥补上一段代码可能存在的判断错误

#若上一跳由于某种原因没有跳到正中间,而下一跳恰好有无法正确识别花纹,则有可能游戏失败,由于花纹面积通常比较大,失败概率较低

for l in range(i, i+200):

pixel = im_pixel[board_x,l]

if abs(pixel[0] - 245) + abs(pixel[1] - 245) + abs(pixel[2] - 245) == 0:

board_y = l+10

break

if not all((board_x, board_y)):

return 0, 0, 0, 0

return piece_x, piece_y, board_x, board_y

def dump_device_info():

size_str = os.popen('adb shell wm size').read()

device_str = os.popen('adb shell getprop ro.product.model').read()

density_str = os.popen('adb shell wm density').read()

print("如果你的脚本无法工作,上报issue时请copy如下信息:\n**********\

\nScreen: {size}\nDensity: {dpi}\nDeviceType: {type}\nOS: {os}\nPython: {python}\n**********".format(

size=size_str.strip(),

type=device_str.strip(),

dpi=density_str.strip(),

os=sys.platform,

python=sys.version

))

def check_screenshot():

global screenshot_way

if os.path.isfile('autojump.png'):

os.remove('autojump.png')

if (screenshot_way < 0):

print('暂不支持当前设备')

sys.exit()

pull_screenshot()

try:

Image.open('./autojump.png').load()

print('采用方式{}获取截图'.format(screenshot_way))

except:

screenshot_way -= 1

check_screenshot()

def main():

dump_device_info()

check_screenshot()

while True:

pull_screenshot()

im = Image.open('./autojump.png')

# 获取棋子和 board 的位置

piece_x, piece_y, board_x, board_y = find_piece_and_board(im)

ts = int(time.time())

print(ts, piece_x, piece_y, board_x, board_y)

set_button_position(im)

jump(math.sqrt((board_x - piece_x) ** 2 + (board_y - piece_y) ** 2))

save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y)

backup_screenshot(ts)

time.sleep(1) # 为了保证截图的时候应落稳了,多延迟一会儿

if __name__ == '__main__':

main()

代码较多,直接为大家分享源码下载链接,很详细:python微信跳一跳

更多内容大家可以参考专题《微信跳一跳》进行学习。

相关文章学习推荐:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

 类似资料: