源码
Python源码下载
工具介绍
- Python或Anaconda
- 手机或模拟器,用于运行游戏
- ADB 驱动,下载地址
- 相关依赖,例如PIL库
实现原理:
精确测量出起始和目标点之间测距离,估计按压的时间来精确跳跃。
思路:
操作步骤
1、将手机点击到《跳一跳》小程序界面;
2、用 ADB 工具获取当前手机截图,并用 ADB 将截图 pull 上来
adb shell screencap -p /sdcard/autojump.png
adb pull /sdcard/autojump.png
3、计算按压时间
4、用 ADB 工具点击屏幕蓄力一跳;
adb shell input swipe x y x y time(ms)
安卓手机操作步骤
iOS 手机操作步骤
主代码示例(wechat_jump_auto.py):
开发者GitHub:wangshub
# coding: utf-8
import os
import sys
import subprocess
import shutil
import time
import math
from PIL import Image, ImageDraw
import random
import json
import re
# TODO: 解决定位偏移的问题
# TODO: 看看两个块中心到中轴距离是否相同,如果是的话靠这个来判断一下当前超前还是落后,便于矫正
# TODO: 一些固定值根据截图的具体大小计算
# TODO: 直接用 X 轴距离简化逻辑
def open_accordant_config():
screen_size = _get_screen_size()
config_file = "{path}/config.json".format(
path=sys.path[0],
screen_size=screen_size
)
if os.path.exists(config_file):
with open(config_file, 'r') as f:
print("Load config file from {}".format(config_file))
return json.load(f)
else:
with open('{}/default.json'.format(sys.path[0]), 'r') as f:
print("Load default config")
return json.load(f)
def _get_screen_size():
size_str = os.popen('adb shell wm size').read()
if not size_str:
print('请安装ADB及驱动并配置环境变量')
sys.exit()
m = re.search('(\d+)x(\d+)', size_str)
if m:
width = m.group(1)
height = m.group(2)
return "{height}x{width}".format(height=height, width=width)
config = open_accordant_config()
# Magic Number,不设置可能无法正常执行,请根据具体截图从上到下按需设置
under_game_score_y = config['under_game_score_y']
press_coefficient = config['press_coefficient'] # 长按的时间系数,请自己根据实际情况调节
piece_base_height_1_2 = config['piece_base_height_1_2'] # 二分之一的棋子底座高度,可能要调节
piece_body_width = config['piece_body_width'] # 棋子的宽度,比截图中量到的稍微大一点比较安全,可能要调节
# 模拟按压的起始点坐标,需要自动重复游戏请设置成“再来一局”的坐标
if config.get('swipe'):
swipe = config['swipe']
else:
swipe = {}
swipe['x1'], swipe['y1'], swipe['x2'], swipe['y2'] = 320, 410, 320, 410
screenshot_way = 2
screenshot_backup_dir = 'screenshot_backups/'
if not os.path.isdir(screenshot_backup_dir):
os.mkdir(screenshot_backup_dir)
def pull_screenshot():
global screenshot_way
# 新的方法请根据效率及适用性由高到低排序
if screenshot_way == 2 or screenshot_way == 1:
process = subprocess.Popen('adb shell screencap -p', shell=True, stdout=subprocess.PIPE)
screenshot = process.stdout.read()
if screenshot_way == 2:
binary_screenshot = screenshot.replace(b'\r\n', b'\n')
else:
binary_screenshot = screenshot.replace(b'\r\r\n', b'\n')
f = open('autojump.png', 'wb')
f.write(binary_screenshot)
f.close()
elif screenshot_way == 0:
os.system('adb shell screencap -p /sdcard/autojump.png')
os.system('adb pull /sdcard/autojump.png .')
def backup_screenshot(ts):
# 为了方便失败的时候 debug
if not os.path.isdir(screenshot_backup_dir):
os.mkdir(screenshot_backup_dir)
shutil.copy('autojump.png', '{}{}.png'.format(screenshot_backup_dir, ts))
def save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y):
draw = ImageDraw.Draw(im)
# 对debug图片加上详细的注释
draw.line((piece_x, piece_y) + (board_x, board_y), fill=2, width=3)
draw.line((piece_x, 0, piece_x, im.size[1]), fill=(255, 0, 0))
draw.line((0, piece_y, im.size[0], piece_y), fill=(255, 0, 0))
draw.line((board_x, 0, board_x, im.size[1]), fill=(0, 0, 255))
draw.line((0, board_y, im.size[0], board_y), fill=(0, 0, 255))
draw.ellipse((piece_x - 10, piece_y - 10, piece_x + 10, piece_y + 10), fill=(255, 0, 0))
draw.ellipse((board_x - 10, board_y - 10, board_x + 10, board_y + 10), fill=(0, 0, 255))
del draw
im.save('{}{}_d.png'.format(screenshot_backup_dir, ts))
def set_button_position(im):
# 将swipe设置为 `再来一局` 按钮的位置
global swipe_x1, swipe_y1, swipe_x2, swipe_y2
w, h = im.size
left = w / 2
top = 1003 * (h / 1280.0) + 10
swipe_x1, swipe_y1, swipe_x2, swipe_y2 = left, top, left, top
def jump(distance):
press_time = distance * press_coefficient
press_time = max(press_time, 200) # 设置 200 ms 是最小的按压时间
press_time = int(press_time)
cmd = 'adb shell input swipe {x1} {y1} {x2} {y2} {duration}'.format(
x1=swipe['x1'],
y1=swipe['y1'],
x2=swipe['x2'],
y2=swipe['y2'],
duration=press_time
)
print(cmd)
os.system(cmd)
# 转换色彩模式hsv2rgb
def hsv2rgb(h, s, v):
h = float(h)
s = float(s)
v = float(v)
h60 = h / 60.0
h60f = math.floor(h60)
hi = int(h60f) % 6
f = h60 - h60f
p = v * (1 - s)
q = v * (1 - f * s)
t = v * (1 - (1 - f) * s)
r, g, b = 0, 0, 0
if hi == 0: r, g, b = v, t, p
elif hi == 1: r, g, b = q, v, p
elif hi == 2: r, g, b = p, v, t
elif hi == 3: r, g, b = p, q, v
elif hi == 4: r, g, b = t, p, v
elif hi == 5: r, g, b = v, p, q
r, g, b = int(r * 255), int(g * 255), int(b * 255)
return r, g, b
# 转换色彩模式rgb2hsv
def rgb2hsv(r, g, b):
r, g, b = r/255.0, g/255.0, b/255.0
mx = max(r, g, b)
mn = min(r, g, b)
df = mx-mn
if mx == mn:
h = 0
elif mx == r:
h = (60 * ((g-b)/df) + 360) % 360
elif mx == g:
h = (60 * ((b-r)/df) + 120) % 360
elif mx == b:
h = (60 * ((r-g)/df) + 240) % 360
if mx == 0:
s = 0
else:
s = df/mx
v = mx
return h, s, v
def find_piece_and_board(im):
w, h = im.size
piece_x_sum = 0
piece_x_c = 0
piece_y_max = 0
board_x = 0
board_y = 0
left_value = 0
left_count = 0
right_value = 0
right_count = 0
from_left_find_board_y = 0
from_right_find_board_y = 0
scan_x_border = int(w / 8) # 扫描棋子时的左右边界
scan_start_y = 0 # 扫描的起始y坐标
im_pixel=im.load()
# 以50px步长,尝试探测scan_start_y
for i in range(int(h / 3), int( h*2 /3 ), 50):
last_pixel = im_pixel[0,i]
for j in range(1, w):
pixel=im_pixel[j,i]
# 不是纯色的线,则记录scan_start_y的值,准备跳出循环
if pixel[0] != last_pixel[0] or pixel[1] != last_pixel[1] or pixel[2] != last_pixel[2]:
scan_start_y = i - 50
break
if scan_start_y:
break
print('scan_start_y: ', scan_start_y)
# 从scan_start_y开始往下扫描,棋子应位于屏幕上半部分,这里暂定不超过2/3
for i in range(scan_start_y, int(h * 2 / 3)):
for j in range(scan_x_border, w - scan_x_border): # 横坐标方面也减少了一部分扫描开销
pixel = im_pixel[j,i]
# 根据棋子的最低行的颜色判断,找最后一行那些点的平均值,这个颜色这样应该 OK,暂时不提出来
if (50 < pixel[0] < 60) and (53 < pixel[1] < 63) and (95 < pixel[2] < 110):
piece_x_sum += j
piece_x_c += 1
piece_y_max = max(i, piece_y_max)
if not all((piece_x_sum, piece_x_c)):
return 0, 0, 0, 0
piece_x = piece_x_sum / piece_x_c
piece_y = piece_y_max - piece_base_height_1_2 # 上移棋子底盘高度的一半
for i in range(int(h / 3), int(h * 2 / 3)):
last_pixel = im_pixel[0, i]
# 计算阴影的RGB值,通过photoshop观察,阴影部分其实就是背景色的明度V 乘以0.7的样子
h, s, v = rgb2hsv(last_pixel[0], last_pixel[1], last_pixel[2])
r, g, b = hsv2rgb(h, s, v * 0.7)
if from_left_find_board_y and from_right_find_board_y:
break
if not board_x:
board_x_sum = 0
board_x_c = 0
for j in range(w):
pixel = im_pixel[j,i]
# 修掉脑袋比下一个小格子还高的情况的 bug
if abs(j - piece_x) < piece_body_width:
continue
# 修掉圆顶的时候一条线导致的小 bug,这个颜色判断应该 OK,暂时不提出来
if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) > 10:
board_x_sum += j
board_x_c += 1
if board_x_sum:
board_x = board_x_sum / board_x_c
else:
# 继续往下查找,从左到右扫描,找到第一个与背景颜色不同的像素点,记录位置
# 当有连续3个相同的记录时,表示发现了一条直线
# 这条直线即为目标board的左边缘
# 然后当前的 y 值减 3 获得左边缘的第一个像素
# 就是顶部的左边顶点
for j in range(w):
pixel = im_pixel[j, i]
# 修掉脑袋比下一个小格子还高的情况的 bug
if abs(j - piece_x) < piece_body_width:
continue
if (abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2])
> 10) and (abs(pixel[0] - r) + abs(pixel[1] - g) + abs(pixel[2] - b) > 10):
if left_value == j:
left_count = left_count+1
else:
left_value = j
left_count = 1
if left_count > 3:
from_left_find_board_y = i - 3
break
# 逻辑跟上面类似,但是方向从右向左
# 当有遮挡时,只会有一边有遮挡
# 算出来两个必然有一个是对的
for j in range(w)[::-1]:
pixel = im_pixel[j, i]
# 修掉脑袋比下一个小格子还高的情况的 bug
if abs(j - piece_x) < piece_body_width:
continue
if (abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2])
> 10) and (abs(pixel[0] - r) + abs(pixel[1] - g) + abs(pixel[2] - b) > 10):
if right_value == j:
right_count = right_count + 1
else:
right_value = j
right_count = 1
if right_count > 3:
from_right_find_board_y = i - 3
break
# 如果顶部像素比较多,说明图案近圆形,相应的求出来的值需要增大,这里暂定增大顶部宽的三分之一
if board_x_c > 5:
from_left_find_board_y = from_left_find_board_y + board_x_c / 3
from_right_find_board_y = from_right_find_board_y + board_x_c / 3
# 按实际的角度来算,找到接近下一个 board 中心的坐标 这里的角度应该是30°,值应该是tan 30°,math.sqrt(3) / 3
board_y = piece_y - abs(board_x - piece_x) * math.sqrt(3) / 3
# 从左从右取出两个数据进行对比,选出来更接近原来老算法的那个值
if abs(board_y - from_left_find_board_y) > abs(from_right_find_board_y):
new_board_y = from_right_find_board_y
else:
new_board_y = from_left_find_board_y
if not all((board_x, board_y)):
return 0, 0, 0, 0
return piece_x, piece_y, board_x, new_board_y
def dump_device_info():
size_str = os.popen('adb shell wm size').read()
device_str = os.popen('adb shell getprop ro.product.model').read()
density_str = os.popen('adb shell wm density').read()
print("如果你的脚本无法工作,上报issue时请copy如下信息:\n**********\
\nScreen: {size}\nDensity: {dpi}\nDeviceType: {type}\nOS: {os}\nPython: {python}\n**********".format(
size=size_str.strip(),
type=device_str.strip(),
dpi=density_str.strip(),
os=sys.platform,
python=sys.version
))
def check_screenshot():
global screenshot_way
if os.path.isfile('autojump.png'):
os.remove('autojump.png')
if (screenshot_way < 0):
print('暂不支持当前设备')
sys.exit()
pull_screenshot()
try:
Image.open('./autojump.png').load()
print('采用方式{}获取截图'.format(screenshot_way))
except:
screenshot_way -= 1
check_screenshot()
def main():
h, s, v = rgb2hsv(201, 204, 214)
print(h, s, v)
r, g, b = hsv2rgb(h, s, v*0.7)
print(r, g, b)
dump_device_info()
check_screenshot()
while True:
pull_screenshot()
im = Image.open('./autojump.png')
# 获取棋子和 board 的位置
piece_x, piece_y, board_x, board_y = find_piece_and_board(im)
ts = int(time.time())
print(ts, piece_x, piece_y, board_x, board_y)
set_button_position(im)
jump(math.sqrt((board_x - piece_x) ** 2 + (board_y - piece_y) ** 2))
save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y)
backup_screenshot(ts)
time.sleep(random.uniform(1.2, 1.4)) # 为了保证截图的时候应落稳了,多延迟一会儿
if __name__ == '__main__':
main()