当前位置: 首页 > 工具软件 > TPR > 使用案例 >

tpr、fpr和far、val含义及计算总结

薛承志
2023-12-01

tpr和fpr含义及其具体计算方法见下列代码段:

def calculate_accuracy(threshold, dist, actual_issame):
    predict_issame = np.less(dist, threshold)
    tp = np.sum(np.logical_and(predict_issame, actual_issame))
    fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))

    tn = np.sum(np.logical_and(np.logical_not(predict_issame), np.logical_not(actual_issame)))
    fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame))
  
    tpr = 0 if (tp+fn == 0) else float(tp) / float(tp+fn)    # 正确预测的正样本占原始样本中正类的概率
    fpr = 0 if (fp+tn == 0) else float(fp) / float(fp+tn)    # 错误预测的正样本占原始样本中负类的概率
    acc = float(tp+tn)/dist.size
    return tpr, fpr, acc

val和far含义及其具体计算方法见下列代码段:

def calculate_val_far(threshold, dist, actual_issame):

    predict_issame = np.less(dist, threshold)
    true_accept = np.sum(np.logical_and(predict_issame, actual_issame))
    false_accept = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
    n_same = np.sum(actual_issame)
    n_diff = np.sum(np.logical_not(actual_issame))
    val = float(true_accept) / float(n_same)    # 正确预测为正类的样本数占原始样本中正类样本的数量
    far = float(false_accept) / float(n_diff)   # 错误预测为正类的样本数占原始样本中负类样本的数量
    return val, far

 

 类似资料: