Backbone发展与语义分割网络发展

淳于飞文
2023-12-01

整理如下(按照arxiv上面时间线的预印版本来整理):

Backbone(基础网络,也可以理解为分类网络):

Backbone可以塞入UNET作为使用。

 

年代网络名称与代码论文名称
1989LeNetBackpropagation Applied to Handwritten Zip Code Recognition
1995

LeNet4,

Boosted LeNet4,

LeNet5

Comparison of learning algorithms for handwritten digit recognition
1998

LeNet4,

Boosted LeNet4,

LeNet5

GradientBased Learning Applied to Document Recognition
2012AlexNetImageNet Classification with Deep Convolutional Neural Networks
2013-12-16NiNNetwork In Network
2014-9-4VGG16-VGG19VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION
2014-9-17

Inception v1

(又称为GoogLeNet)

Going Deeper with Convolutions
2015-2-6MSRANetDelving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
2015-12-2

Inception v2

(又称为GoogLeNet)

Rethinking the Inception Architecture for Computer Vision
2015-12-10ResNetDeep Residual Learning for Image Recognition
2016-2-23

Inception v4

(又称为GoogLeNet)

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
2016-2-24SqueezeNetSqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
2016-3-16

ResNet v2

Identity Mappings in Deep Residual Networks
2016-5-23Wide ResNetWide Residual Networks
2016-8-25DenseNetDensely Connected Convolutional Networks
2016-10-7

Inception v3

(又称为GoogLeNet)

Xception: Deep Learning with Depthwise Separable Convolutions
2016-11-16ResNextAggregated Residual Transformations for Deep Neural Networks
2017-4-17MobileNetMobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
2017-7-4ShuffleNetShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
2017-7-6DPNetDual Path Networks
2017-9-5

SENet:

SE-ResNet,SE-ResNext

Squeeze-and-Excitation Networks
2017-10-26CapsulesDynamic Routing Between Capsules
2018-1-13MobileNet v2MobileNetV2: Inverted Residuals and Linear Bottlenecks
2018-5-23SqueezeNextSqueezeNext: Hardware-Aware Neural Network Design
2018-7-30ShuffleNet V2ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
2018-7-31NasNetMnasNet: Platform-Aware Neural Architecture Search for Mobile
2019-1-24AutoShuffleNetAutoShuffleNet: Learning Permutation Matrices via an Exact Lipschitz Continuous Penalty in Deep Convolutional Neural Networks
2019-5-6MobileNet v3Searching for MobileNetV3

 

 

 

 

 

语义分割网络:

年代网络名称与代码论文名称
2013-11-11RCNNRich feature hierarchies for accurate object detection and semantic segmentation
2014-6-18SPP(目标检测)Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
2014-11-14 FCNFully Convolutional Networks for Semantic Segmentation
2014-12-22DeepLab v1SEMANTIC IMAGE SEGMENTATION WITH DEEP CONVOLUTIONAL NETS AND FULLY CONNECTED CRFS
2015-5-18UNETU-Net: Convolutional Networks for Biomedical Image Segmentation
2015-6-4Faster R-CNN(里面提出了RPN)Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
2015-6-8YOLO v1You Only Look Once: Unified, Real-Time Object Detection
2015-11-9SegNetBayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding
2015-12月Fast R-CNNFast R-CNN
2015-12-8SSDSSD: Single Shot MultiBox Detector
2016-6-2DeepLab v2DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
2016-11-20RefineNetRefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation
2016-12-4PSPNetPyramid Scene Parsing Network
2016-12-9FPNFeature Pyramid Networks for Object Detection
2016-12-25YOLO v2YOLO9000: Better, Faster, Stronger
2017-3-20Mask-RCNNMask R-CNN
2017-6-13DeepLab v3Rethinking Atrous Convolution for Semantic Image Segmentation
2018-4-8YOLO v3YOLOv3: An Incremental Improvement

 

 

各种网络的实现框架可以参考[1],

各种网络的综述可以参考[2]

想看个大概的可以翻阅[3]

[4]的内容很有意思,可以看下:

 

[1]https://blog.csdn.net/helloworld_Fly/article/details/80306117

[2]https://arxiv.org/pdf/1704.06857.pdf

[3]https://blog.csdn.net/qq_20084101/article/details/80432960

[4]https://www.jiqizhixin.com/articles/092301

 类似资料: