当前位置: 首页 > 工具软件 > Nitrate > 使用案例 >

signature=c905ef227ea5868b80bab0f3bd7532ec,Photolysis imprint in the nitrate stable isotope signal i...

太叔志文
2023-12-01

摘要:

The nitrogen (delta(15)N) and triple oxygen (delta(17)O and delta(18)O) isotopic composition of nitrate (NO(3)(-)) was measured year-round in the atmosphere and snow pits at Dome C, Antarctica (DC, 75.1 degrees S, 123.3 degrees E), and in surface snow on a transect between DC and the coast. Comparison to the isotopic signal in atmospheric NO(3)(-) shows that snow NO(3)(-) is significantly enriched in delta(15)N by > 200 parts per thousand and depleted in delta(18)O by < 40 parts per thousand. Post-depositional fractionation in delta(17)O(NO(3)(-)) is small, potentially allowing reconstruction of past shifts in tropospheric oxidation pathways from ice cores. Assuming a Rayleigh-type process we find fractionation constants epsilon of -60 +/- 15 parts per thousand, 8 +/- 2 parts per thousand and 1 +/- 1 parts per thousand, for delta(15)N, delta(18)O and delta(17)O, respectively. A photolysis model yields an upper limit for the photolytic fractionation constant (15)epsilon of delta(15)N, consistent with lab and field measurements, and demonstrates a high sensitivity of (15)epsilon to the incident actinic flux spectrum. The photolytic (15)epsilon is process-specific and therefore applies to any snow covered location. Previously published (15)epsilon values are not representative for conditions at the Earth surface, but apply only to the UV lamp used in the reported experiment (Blunier et al., 2005; Jacobi et al., 2006). Depletion of oxygen stable isotopes is attributed to photolysis followed by isotopic exchange with water and hydroxyl radicals. Conversely, (15)N enrichment of the NO(3)(-) fraction in the snow implies (15)N depletion of emissions. Indeed, delta(15)N in atmospheric NO(3)(-) shows a strong decrease from background levels (4 +/- 7 parts per thousand) to -35 parts per thousand in spring followed by recovery during summer, consistent with significant snowpack emissions of reactive nitrogen. Field and lab evidence therefore suggest that photolysis is an important process driving fractionation and associated NO(3)(-) loss from snow. The delta(17)O signature confirms previous coastal measurements that the peak of atmospheric NO(3)(-) in spring is of stratospheric origin. After sunrise photolysis drives then redistribution of NO(3)(-) from the snowpack photic zone to the atmosphere and a snow surface skin layer, thereby concentrating NO(3)(-) at the surface. Little NO(3)(-) appears to be exported off the EAIS plateau, still snow emissions from as far as 600 km inland can contribute to the coastal NO(3)(-) budget.

展开

 类似资料: