signature=55c987410e42a2ac574997e6619d144d,bitcoin/key.cpp at 85fa648c857f5830fbc748e857b122515d1eb6...

童化
2023-12-01

// Copyright (c) 2009-2019 The Bitcoin Core developers

// Copyright (c) 2017 The Zcash developers

// Distributed under the MIT software license, see the accompanying

// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include

#include

#include

#include

#include

#include

static secp256k1_context* secp256k1_context_sign = nullptr;

/** These functions are taken from the libsecp256k1 distribution and are very ugly. */

/**

* This parses a format loosely based on a DER encoding of the ECPrivateKey type from

* section C.4 of SEC 1 , with the following caveats:

*

* * The octet-length of the SEQUENCE must be encoded as 1 or 2 octets. It is not

* required to be encoded as one octet if it is less than 256, as DER would require.

* * The octet-length of the SEQUENCE must not be greater than the remaining

* length of the key encoding, but need not match it (i.e. the encoding may contain

* junk after the encoded SEQUENCE).

* * The privateKey OCTET STRING is zero-filled on the left to 32 octets.

* * Anything after the encoding of the privateKey OCTET STRING is ignored, whether

* or not it is validly encoded DER.

*

* out32 must point to an output buffer of length at least 32 bytes.

*/

static int ec_seckey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *seckey, size_t seckeylen) {

const unsigned char *end = seckey + seckeylen;

memset(out32, 0, 32);

/* sequence header */

if (end - seckey < 1 || *seckey != 0x30u) {

return 0;

}

seckey++;

/* sequence length constructor */

if (end - seckey < 1 || !(*seckey & 0x80u)) {

return 0;

}

ptrdiff_t lenb = *seckey & ~0x80u; seckey++;

if (lenb < 1 || lenb > 2) {

return 0;

}

if (end - seckey < lenb) {

return 0;

}

/* sequence length */

ptrdiff_t len = seckey[lenb-1] | (lenb > 1 ? seckey[lenb-2] << 8 : 0u);

seckey += lenb;

if (end - seckey < len) {

return 0;

}

/* sequence element 0: version number (=1) */

if (end - seckey < 3 || seckey[0] != 0x02u || seckey[1] != 0x01u || seckey[2] != 0x01u) {

return 0;

}

seckey += 3;

/* sequence element 1: octet string, up to 32 bytes */

if (end - seckey < 2 || seckey[0] != 0x04u) {

return 0;

}

ptrdiff_t oslen = seckey[1];

seckey += 2;

if (oslen > 32 || end - seckey < oslen) {

return 0;

}

memcpy(out32 + (32 - oslen), seckey, oslen);

if (!secp256k1_ec_seckey_verify(ctx, out32)) {

memset(out32, 0, 32);

return 0;

}

return 1;

}

/**

* This serializes to a DER encoding of the ECPrivateKey type from section C.4 of SEC 1

* . The optional parameters and publicKey fields are

* included.

*

* seckey must point to an output buffer of length at least CKey::SIZE bytes.

* seckeylen must initially be set to the size of the seckey buffer. Upon return it

* will be set to the number of bytes used in the buffer.

* key32 must point to a 32-byte raw private key.

*/

static int ec_seckey_export_der(const secp256k1_context *ctx, unsigned char *seckey, size_t *seckeylen, const unsigned char *key32, bool compressed) {

assert(*seckeylen >= CKey::SIZE);

secp256k1_pubkey pubkey;

size_t pubkeylen = 0;

if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {

*seckeylen = 0;

return 0;

}

if (compressed) {

static const unsigned char begin[] = {

0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20

};

static const unsigned char middle[] = {

0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,

0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,

0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,

0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,

0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,

0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,

0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,

0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,

0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00

};

unsigned char *ptr = seckey;

memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);

memcpy(ptr, key32, 32); ptr += 32;

memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);

pubkeylen = CPubKey::COMPRESSED_SIZE;

secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);

ptr += pubkeylen;

*seckeylen = ptr - seckey;

assert(*seckeylen == CKey::COMPRESSED_SIZE);

} else {

static const unsigned char begin[] = {

0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20

};

static const unsigned char middle[] = {

0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,

0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,

0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,

0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,

0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,

0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,

0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,

0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,

0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,

0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,

0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00

};

unsigned char *ptr = seckey;

memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);

memcpy(ptr, key32, 32); ptr += 32;

memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);

pubkeylen = CPubKey::SIZE;

secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);

ptr += pubkeylen;

*seckeylen = ptr - seckey;

assert(*seckeylen == CKey::SIZE);

}

return 1;

}

bool CKey::Check(const unsigned char *vch) {

return secp256k1_ec_seckey_verify(secp256k1_context_sign, vch);

}

void CKey::MakeNewKey(bool fCompressedIn) {

do {

GetStrongRandBytes(keydata.data(), keydata.size());

} while (!Check(keydata.data()));

fValid = true;

fCompressed = fCompressedIn;

}

bool CKey::Negate()

{

assert(fValid);

return secp256k1_ec_seckey_negate(secp256k1_context_sign, keydata.data());

}

CPrivKey CKey::GetPrivKey() const {

assert(fValid);

CPrivKey seckey;

int ret;

size_t seckeylen;

seckey.resize(SIZE);

seckeylen = SIZE;

ret = ec_seckey_export_der(secp256k1_context_sign, seckey.data(), &seckeylen, begin(), fCompressed);

assert(ret);

seckey.resize(seckeylen);

return seckey;

}

CPubKey CKey::GetPubKey() const {

assert(fValid);

secp256k1_pubkey pubkey;

size_t clen = CPubKey::SIZE;

CPubKey result;

int ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pubkey, begin());

assert(ret);

secp256k1_ec_pubkey_serialize(secp256k1_context_sign, (unsigned char*)result.begin(), &clen, &pubkey, fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);

assert(result.size() == clen);

assert(result.IsValid());

return result;

}

// Check that the sig has a low R value and will be less than 71 bytes

bool SigHasLowR(const secp256k1_ecdsa_signature* sig)

{

unsigned char compact_sig[64];

secp256k1_ecdsa_signature_serialize_compact(secp256k1_context_sign, compact_sig, sig);

// In DER serialization, all values are interpreted as big-endian, signed integers. The highest bit in the integer indicates

// its signed-ness; 0 is positive, 1 is negative. When the value is interpreted as a negative integer, it must be converted

// to a positive value by prepending a 0x00 byte so that the highest bit is 0. We can avoid this prepending by ensuring that

// our highest bit is always 0, and thus we must check that the first byte is less than 0x80.

return compact_sig[0] < 0x80;

}

bool CKey::Sign(const uint256 &hash, std::vector& vchSig, bool grind, uint32_t test_case) const {

if (!fValid)

return false;

vchSig.resize(CPubKey::SIGNATURE_SIZE);

size_t nSigLen = CPubKey::SIGNATURE_SIZE;

unsigned char extra_entropy[32] = {0};

WriteLE32(extra_entropy, test_case);

secp256k1_ecdsa_signature sig;

uint32_t counter = 0;

int ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, (!grind && test_case) ? extra_entropy : nullptr);

// Grind for low R

while (ret && !SigHasLowR(&sig) && grind) {

WriteLE32(extra_entropy, ++counter);

ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, extra_entropy);

}

assert(ret);

secp256k1_ecdsa_signature_serialize_der(secp256k1_context_sign, vchSig.data(), &nSigLen, &sig);

vchSig.resize(nSigLen);

return true;

}

bool CKey::VerifyPubKey(const CPubKey& pubkey) const {

if (pubkey.IsCompressed() != fCompressed) {

return false;

}

unsigned char rnd[8];

std::string str = "Bitcoin key verification\n";

GetRandBytes(rnd, sizeof(rnd));

uint256 hash;

CHash256().Write(MakeUCharSpan(str)).Write(rnd).Finalize(hash);

std::vector vchSig;

Sign(hash, vchSig);

return pubkey.Verify(hash, vchSig);

}

bool CKey::SignCompact(const uint256 &hash, std::vector& vchSig) const {

if (!fValid)

return false;

vchSig.resize(CPubKey::COMPACT_SIGNATURE_SIZE);

int rec = -1;

secp256k1_ecdsa_recoverable_signature sig;

int ret = secp256k1_ecdsa_sign_recoverable(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, nullptr);

assert(ret);

ret = secp256k1_ecdsa_recoverable_signature_serialize_compact(secp256k1_context_sign, &vchSig[1], &rec, &sig);

assert(ret);

assert(rec != -1);

vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);

return true;

}

bool CKey::Load(const CPrivKey &seckey, const CPubKey &vchPubKey, bool fSkipCheck=false) {

if (!ec_seckey_import_der(secp256k1_context_sign, (unsigned char*)begin(), seckey.data(), seckey.size()))

return false;

fCompressed = vchPubKey.IsCompressed();

fValid = true;

if (fSkipCheck)

return true;

return VerifyPubKey(vchPubKey);

}

bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const {

assert(IsValid());

assert(IsCompressed());

std::vector> vout(64);

if ((nChild >> 31) == 0) {

CPubKey pubkey = GetPubKey();

assert(pubkey.size() == CPubKey::COMPRESSED_SIZE);

BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, vout.data());

} else {

assert(size() == 32);

BIP32Hash(cc, nChild, 0, begin(), vout.data());

}

memcpy(ccChild.begin(), vout.data()+32, 32);

memcpy((unsigned char*)keyChild.begin(), begin(), 32);

bool ret = secp256k1_ec_seckey_tweak_add(secp256k1_context_sign, (unsigned char*)keyChild.begin(), vout.data());

keyChild.fCompressed = true;

keyChild.fValid = ret;

return ret;

}

bool CExtKey::Derive(CExtKey &out, unsigned int _nChild) const {

out.nDepth = nDepth + 1;

CKeyID id = key.GetPubKey().GetID();

memcpy(&out.vchFingerprint[0], &id, 4);

out.nChild = _nChild;

return key.Derive(out.key, out.chaincode, _nChild, chaincode);

}

void CExtKey::SetSeed(const unsigned char *seed, unsigned int nSeedLen) {

static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};

std::vector> vout(64);

CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(vout.data());

key.Set(vout.data(), vout.data() + 32, true);

memcpy(chaincode.begin(), vout.data() + 32, 32);

nDepth = 0;

nChild = 0;

memset(vchFingerprint, 0, sizeof(vchFingerprint));

}

CExtPubKey CExtKey::Neuter() const {

CExtPubKey ret;

ret.nDepth = nDepth;

memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4);

ret.nChild = nChild;

ret.pubkey = key.GetPubKey();

ret.chaincode = chaincode;

return ret;

}

void CExtKey::Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const {

code[0] = nDepth;

memcpy(code+1, vchFingerprint, 4);

code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF;

code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF;

memcpy(code+9, chaincode.begin(), 32);

code[41] = 0;

assert(key.size() == 32);

memcpy(code+42, key.begin(), 32);

}

void CExtKey::Decode(const unsigned char code[BIP32_EXTKEY_SIZE]) {

nDepth = code[0];

memcpy(vchFingerprint, code+1, 4);

nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8];

memcpy(chaincode.begin(), code+9, 32);

key.Set(code+42, code+BIP32_EXTKEY_SIZE, true);

}

bool ECC_InitSanityCheck() {

CKey key;

key.MakeNewKey(true);

CPubKey pubkey = key.GetPubKey();

return key.VerifyPubKey(pubkey);

}

void ECC_Start() {

assert(secp256k1_context_sign == nullptr);

secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);

assert(ctx != nullptr);

{

// Pass in a random blinding seed to the secp256k1 context.

std::vector> vseed(32);

GetRandBytes(vseed.data(), 32);

bool ret = secp256k1_context_randomize(ctx, vseed.data());

assert(ret);

}

secp256k1_context_sign = ctx;

}

void ECC_Stop() {

secp256k1_context *ctx = secp256k1_context_sign;

secp256k1_context_sign = nullptr;

if (ctx) {

secp256k1_context_destroy(ctx);

}

}

 类似资料: