R2决定系数是对线性模型评估的一种评价指标,其值最大为1,最小为0,当值越接近于1,则说明模型越好;值越接近于0,则模型越差。
使用 y i {\text{y}}_i yi表示真实的观测值,使用 y _ \overset{\_}{\mathop y} y_表示真实观测值的平均值,使用 y i ^ \overset{\hat{}}{\mathop {y_i}} yi^表示预测值,于是就产生下以下的指标:
回归平方和(SSR)
S
S
R
=
∑
i
=
1
n
(
y
i
^
−
y
−
)
2
SSR = \sum\limits_{i = 1}^n {(\overset{\hat{}}{\mathop {{y_i}}} - \overset{ - }{\mathop y} } {)^2}
SSR=i=1∑n(yi^−y−)2估计值与平均值的误差,反映自变量与因变量之间的相关程度的偏差平方和
残差平方和(SSE)
S
S
E
=
∑
i
=
1
n
(
y
i
−
y
i
^
)
2
SSE = \sum\limits_{i = 1}^n {(\overset{{}}{\mathop {{y_i}}} - \overset{\hat{}}{\mathop {{y_i}}} } {)^2}
SSE=i=1∑n(yi−yi^)2即估计值与真实值的误差,反映模型拟合程度
总离差平方和(SST)
S
S
T
=
S
S
R
+
S
S
E
=
∑
i
=
1
n
(
y
i
−
y
_
)
2
SST = SSR + SSE = \sum\limits_{i = 1}^n {(\overset{{}}{\mathop {{y_i}}} - \overset{\_}{\mathop {{y_{}}}} } {)^2}
SST=SSR+SSE=i=1∑n(yi−y_)2即平均值和真实值之间的误差,反映与数学期望的偏离程度
R2 score ,即决定系数
反映因变量的全部变异能通过回归关系被变量解释的比例,计算公式:
R
2
=
1
−
S
S
E
SST
{R^2} = 1 - \frac{{SSE}}{{{\text{SST}}}}
R2=1−SSTSSE 即
R
2
=
1
−
∑
i
=
1
n
(
y
i
−
y
i
^
)
2
∑
i
=
1
n
(
y
i
−
y
_
)
2
{R^2} = 1 - \frac{{\sum\nolimits_{i = 1}^n {{{({y_i} - \overset{\hat{}}{\mathop {{y_i}}} )}^2}} }}{{\sum\nolimits_{i = 1}^n {{{({y_i} - \overset{\_}{\mathop {{y_{}}}} )}^2}} }}
R2=1−∑i=1n(yi−y_)2∑i=1n(yi−yi^)2进一步化简为:
R
2
=
1
−
∑
i
(
y
i
−
y
^
i
)
2
/
n
∑
i
(
y
i
−
y
_
)
2
/
n
=
1
−
R
M
S
E
V
a
r
{R^2} = 1 - \frac{{\sum\limits_i {{{({y_i} - {{\overset{\hat {}}{\mathop y} }_i})}^2}/n} }}{{\sum\limits_i {{{({y_i} - \overset{\_}{\mathop y} )}^2}/n} }} = 1 - \frac{{RMSE}}{{Var}}
R2=1−i∑(yi−y_)2/ni∑(yi−y^i)2/n=1−VarRMSE如此一来,分子就变成了常用的评价指标,均方误差RMSE,分母则变成了方差,对于
R
2
{R^2}
R2
可以通俗的理解为使用均值作为误差基准,看预测误差是否大于或者小于均值基准误差
若:
R2 score = 1,样本中预测值和真实值完全相等,没有任何误差,表示回归分析中自变量对因变量的解释越好
R2 score = 0,此时分子等于分母,样本的每项预测值都等于均值
最后,是sklearn中的有关于模型评估的几个API:
import sklearn.metrics as sm # 模型评估模块
# 拿到一组测试集模型进行模型评估
test_x = 测试变量数据集
test_y = 测试结果数据集
# 训练的模型,获取模型预测值
pred_test_y=model.predict(test_x)
# 平均绝对值误差 mae
print(sm.mean_absolute_error(test_y, pred_test_y))
# 平均平方误差:均方误差 mse
print(sm.mean_squared_error(test_y, pred_test_y))
# 中位数绝对偏差
print(sm.median_absolute_error(test_y, pred_test_y))
# r2_score
print(sm.r2_score(test_y,pred_test_y))
如有错误请联系作者改正,谢谢!