mmsegmentation的调试我花了不少时间,我用的天池篡改检测数据,原始数据是jpg格式,label是0-255之间像素的一个png格式,这里有几个问题:1.0-255像素之间是多个值,而不是只有两类,实际上应该是两类任务。2.0-255像素应该是要0-1归一化的。
1.dataset上我选择的是cityscapes,因为看到数据集是标准的jpg+mask,但是cityscapes有171类,一个像素值其实对应了一类,天池篡改数据集不是这样的,而应该是只有0和255两类。要修改config/models下面的num_classes类别。
2.要在configs/datasets下选择cityscapes这个类,并且改数据集路径,一般1080Ti的话,samplers_per_gpu只能选到2,works选2.其次有个reduce_zero_label的配置,一般选False,这里是选择是否忽略背景类,不用做修改。
3.在core下evaluation中改class_names这个文件,这个文件容易忘,在mmclas中已经没有了,选择cityscapes改cityscapes_classes和cityscapes_palette。
4.在datsets的cityscapes中改一下classes和palette。
5.在loading的LoadAnnotations中改一下,加上二值化。
def __call__(self, results):
"""Call function to load multiple types annotations.
Args:
results (dict): Result dict from :obj:`mmseg.CustomDataset`.
Returns:
dict: The dict contains loaded semantic segmentation annotations.
"""
if self.file_client is None:
self.file_client = mmcv.FileClient(**self.file_client_args)
if results.get('seg_prefix', None) is not None:
filename = osp.join(results['seg_prefix'],
results['ann_info']['seg_map'])
else:
filename = results['ann_info']['seg_map']
img_bytes = self.file_client.get(filename)
gt_semantic_seg = mmcv.imfrombytes(
img_bytes, flag='unchanged',
backend=self.imdecode_backend).squeeze().astype(np.uint8)
# import pdb;pdb.set_trace()
# modify if custom classes
if results.get('label_map', None) is not None:
# Add deep copy to solve bug of repeatedly
# replace `gt_semantic_seg`, which is reported in
# https://github.com/open-mmlab/mmsegmentation/pull/1445/
gt_semantic_seg_copy = gt_semantic_seg.copy()
for old_id, new_id in results['label_map'].items():
gt_semantic_seg[gt_semantic_seg_copy == old_id] = new_id
self.binarize = True
if self.binarize:
gt_semantic_seg = (gt_semantic_seg != 0).astype(np.uint8)
# reduce zero_label
if self.reduce_zero_label:
# avoid using underflow conversion
gt_semantic_seg[gt_semantic_seg == 0] = 255
gt_semantic_seg = gt_semantic_seg - 1
gt_semantic_seg[gt_semantic_seg == 254] = 255
results['gt_semantic_seg'] = gt_semantic_seg
results['seg_fields'].append('gt_semantic_seg')
return results
6.mmseg中海油一个ignore_index,默认是忽略255这个像素值,做了二值化就不用管这个了。