题目大意:给一张$n$个点$m$条边的图,保证若有一个环,一定是完全子图,多次询问两个点之间的最短路径长度
题解:把完全子图缩成一个点,圆方树,方点权值设成$1$,圆点设成$0$即可。
卡点:数组开小
C++ Code:
#include <cstdio>
#include <algorithm>
#define maxn 100010
#define maxm 500010
inline int min(int a, int b) {return a < b ? a : b;}
inline int max(int a, int b) {return a > b ? a : b;}
namespace Tree {
int head[maxn << 1], cnt;
struct Edge {
int to, nxt;
} e[maxn << 2];
inline void addE(int a, int b) {
e[++cnt] = (Edge) {b, head[a]}; head[a] = cnt;
e[++cnt] = (Edge) {a, head[b]}; head[b] = cnt;
}
#define M 19
int nodenum, n;
int dep[maxn << 1], sum[maxn << 1], fa[M][maxn << 1];
void dfs(int u) {
for (int i = 1; i < M; i++) fa[i][u] = fa[i - 1][fa[i - 1][u]];
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa[0][u]) {
fa[0][v] = u; dep[v] = dep[u] + 1;
sum[v] = sum[u] + (v > n);
dfs(v);
}
}
}
inline int LCA(int x, int y) {
if (x == y) return x;
if (dep[x] < dep[y]) std::swap(x, y);
for (int i = dep[x] - dep[y]; i; i &= i - 1) x = fa[__builtin_ctz(i)][x];
if (x == y) return x;
for (int i = M - 1; ~i; i--) if (fa[i][x] != fa[i][y]) x = fa[i][x], y = fa[i][y];
return fa[0][x];
}
inline int ask(int x, int y) {
int lca = LCA(x, y);
return sum[x] + sum[y] - (sum[lca] << 1) + (lca > n);
}
void init(int __n) {
n = __n;
sum[1] = 0;
dfs(1);
}
#undef M
}
namespace Graph {
int head[maxn], cnt;
struct Edge {
int to, nxt;
} e[maxm << 1];
inline void addE(int a, int b) {
e[++cnt] = (Edge) {b, head[a]}; head[a] = cnt;
e[++cnt] = (Edge) {a, head[b]}; head[b] = cnt;
}
using Tree::nodenum;
int DFN[maxn], low[maxn], idx;
int S[maxn], top;
void tarjan(int u) {
DFN[u] = low[u] = ++idx;
S[++top] = u;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (!DFN[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
if (low[v] >= DFN[u]) {
nodenum++;
Tree::addE(nodenum, u);
do {
v = S[top--];
Tree::addE(nodenum, v);
} while (v != e[i].to);
}
} else low[u] = min(low[u], DFN[v]);
}
}
void init(int n) {
tarjan(1);
Tree::init(n);
}
}
int n, m, Q;
int main() {
scanf("%d%d%d", &n, &m, &Q); Tree::nodenum = Tree::n = n;
for (int i = 0, a, b; i < m; i++) {
scanf("%d%d", &a, &b);
Graph::addE(a, b);
}
Graph::init(n);
while (Q --> 0) {
int u, v;
scanf("%d%d", &u, &v);
printf("%d\n", Tree::ask(u, v));
}
return 0;
}