当前位置: 首页 > 工具软件 > forecasting > 使用案例 >

Forecasting (一):introduction

赵珂
2023-12-01

本篇文章希望对demand forecasting涉及的技术进行框架性的整理。首先参考的是供应链及库存相关的著作,一般其中都会有关于forecasting的一章。

References

  1. Waters, D. (2003). Inventory control and management 2nd. John Wiley & Sons. (偏OM)
  2. Axsäter, S. (2015). Inventory control (Vol. 225) 3rd. Springer. (更新,信息更多些)
  3. Wheelwright, S., Makridakis, S., & Hyndman, R. J. (1998). Forecasting: methods and applications. John Wiley & Sons.(Add seasonality to ARIMA)
  4. Nahmias, S. (1994). Demand estimation in lost sales inventory systems. Naval Research Logistics (NRL), 41(6), 739-757. citation 175
  5. https://lovvge.github.io/Forecasting-Tutorial-KDD-2019/  (TODO 还没来得及细看

方法论

哲学

  1. Fcst is unavoidable, no-fcst implies casual fcst
  2. fcst->realization->analysis->fcst again...  is a loop
  3. Not only demand needs to be fcsted, uncertainty is everywhere: when we assume a futre cost, this is also fcst
  4. 系统: input->fcst->anomaly detection后处理-> 叠加expert opinon -> final plan
  5. A good fcst is :
    1. Accurate and unbiased
    2. Sensitive to changes but robust
    3. White box, easy to explain

方法分类

  • Demand forecasting -> Time series forecasting
    • Qualicative
      • Judgemental fcst (based on expert opinion) 
        • Personal insight:一个人。不可靠
        • panel consensus: 一群人达成共识。太主观
        • delphi:一群人提交意见然后公示,再讨论等。稍微好些
        • market survey
        • historical analogy:适合新品
    • Quantitative
      • Projective : 假定历史pattern将反应到未来
        • Simple average
        • Moving average
        • Exponential Smoothing
      • Causal: 假定demand由一些因素导致,进行拟合
        • Linear regression
        • ML, tree models
      • Combined
        • Trend+Seasonal model. 既有历史pattern也使用causal model进行叠加,例如对季节性的处理

 

Practical Concerns

Time series

  1. Always start by data analysis and visualization: dray the graph
  2. Point fcst is never correct: there is random noises

Causal

  1. LR or ML: use r-square and r to check goodness of fit and correlations

Projective

  1. MA: window size determines sensibility to demand change
  2. ES: 当品数较大,有必要设置一些自动监控测试,例如通过tracking signal探测异常。一个可能的定义: sum of errors/MAD。
    1. ES with trends: Holt's algo. two parameters. For monthly update: consider alpha 0.2 beta 0.05
    2. Winters Trend-Seasonal method. 在seasonality上,可以通过聚合来减少random deviation带来的影响.这也提醒我们,不同的components可以用不同维度的聚合数据
    3. use lr for trend model is not preferred wrt ES with trend. p21 Axsater.
  3. Sporadic demand:稀疏但每次量比较大。把出现间隔作为变量,做es
  4. Box-Jenkins technique (ARIMA)
    1. 可以处理非独立的demand
    2. Add seasonality to ARIMA. Makridakis et al. 1998.
  5. 灵魂拷问:Projective假设合理吗?历史pattern 序列可以延伸到未来?

Trend and seasonality models

  1. LR->baseline+trend->season index->average index->future by LR->multiple index
  2. 使用causal approach处理类似seasonality这种叠加因素,与baseline叠加。可以额外加入迭代的机制。

Some facts: fcst needs to be planned

  1. Decision makers' opinions are biased: 听众希望偏高/偏低的预测
  2. 预测的精度要看听众需要
  3. More uncertainty the fcst is, more safty stock needed:体现了传统供应链中预测和库存的关系
  4. 系统性的异常检测和后处理流程,基于MAD

Forecast error treatement

  1. 使用MAD衡量预测偏差。假定预测值为mean,则MAD = |x_t - x_t^|. 含义与sigma类似并且近似等于sigma/1.25, assuming normal distribution
  2. 初期信息不全,也有方法determine the standard deviation as a function of demand
  3. 如何考虑censored demand。 Nahmias 1994
  4. 基于MAD进行异常值检测

 

 

 

 类似资料: