多papers—自动机器学习: 最新进展综述与开放挑战 | AutoML
(1)2018综述文章:Taking Human out of Learning Applications: A Survey on Automated Machine Learning
原文:yhttps://arxiv.org/abs/1810.13306v1
解读1:http://www.aibbt.com/a/48548.html
解读2:https://www.jianshu.com/p/7df532c436f5
(2)2019综述文章:AutoML: A Survey of the State-of-the-Art
原文:https://arxiv.org/pdf/1908.00709.pdf
解读0(简明,有引用文献):AutoML: A Survey of the state-of-the-art
解读1(详细):AutoML:最新技术概览
解读2(简洁有条理):AutoML自动机器学习:最新进展综述
(2.1)2019综述:Neural Architecture Search: A Survey
解读:Neural Architecture Search: A Survey (神经网络结构搜索survey)
(2.2)2019综述:A Survey on Neural Architecture Search (Wistuba et al. 2019)
神经网络架构搜索(Neural Architecture Search)杂谈
(4)【小结】除了网络搜索(NAS),AutoML对深度学习模型优化还有哪些贡献?
除了网络搜索(NAS),AutoML对深度学习模型优化还有哪些贡献?
AutoML - 数据增广
论文 | 用于移动端模型自动压缩与加速的AutoML
Auto-FPN: Automatic Network Architecture Adaptation for Object
Detection (ICCV2019)
DetNAS: Backbone Search for Object Detection (NIPS19)
github地址:https://github.com/megvii-model/DetNAS
Efficient Neural Architecture Transformation Search in Channel-Level for Object Detection (Arxiv)
EfficientDet: Scalable and Efficient Object Detection (Arxiv)
MnasFPN : Learning Latency-aware Pyramid Architecture for Object Detection on Mobile Devices (Arxiv)
NAS-FCOS: Fast Neural Architecture Search for Object Detection (Arxiv)
github:https://github.com/Lausannen/NAS-FCOS
NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection (CVPR2019)
SM-NAS: Structural-to-Modular Neural Architecture Search for Object Detection (AAAI2020)
自动化机器学习(AutoML)文献/工具/项目资源大列表分享
非常全面的AutoML资源,看这个就够了!
AutoML研究分析—auto-keras怎么用的
github论文荟萃:
https://github.com/hibayesian/awesome-automl-papers
https://github.com/windmaple/awesome-AutoML
https://github.com/guan-yuan/awesome-AutoML-and-Lightweight-Models
谷歌开源 MobileNetV3:新思路 AutoML 改进计算机视觉模型移动端
你想要的神经网络自动设计,谷歌大脑帮你实现了:用参数共享高效地搜索神经网络架构(ENAS)