Circular primes

姚昊焱
2023-12-01

https://projecteuler.net/problem=35

Circular primes

Problem 35

The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime.

There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97.

How many circular primes are there below one million?

方法很简单,快速算出100万以下的所有素数,然后在素数里面,进行查找,满足要求了,就把一整串(所有循环的数)都加到结果集里面,凡是已经加进去的不再参与查找,直到查找完成.

def CircularPrimes():
    #算100万以下的素数
    PrimeList = MillionPrimes()
    #保存结果集
    result = set()
    for i in range(2,1000001):
        #凡是是素数的,也不再结果集的,都拿来进行判断
        if PrimeList[i] and i not in result:
            #判断数字的循环序列,如果都是素数,就加到结果集中
            Cirsular(i,PrimeList,result)
    return len(result)

def MillionPrimes():
    primeList=[True]*1000001
    for i in range(2,1000001):
        if primeList[i] == True:
            mul = 2
            while i * mul < 1000001:
                primeList[i * mul] = False
                mul+=1
    return primeList

def Cirsular(num,List,Set):
    CirsularList = [num]
    #数字的长度
    lenI=len(str(num))
    #如果就一位的话,直接放进去,不用循环了
    if lenI == 1:
        Set.add(num)
        return 0
    tmp = num
    for i in range(1,lenI):
        #循环计算下一个数字,如果不是素数,则直接退出
        tmp = nextCircular(tmp,lenI-1)
        if not List[tmp]:
            return 0
        CirsularList.append(tmp)
    #计算完成,都是素数,加到集合里面
    for i in CirsularList:
        Set.add(i)

def nextCircular(num,lenNum):
    first,second = divmod(num,10)
    return second * (10** lenNum) + first

print(CircularPrimes())    
    


 类似资料:

相关阅读

相关文章

相关问答