当前位置: 首页 > 工具软件 > J2Minesweeper > 使用案例 >

Minesweeper

姚骁
2023-12-01

Let's play the minesweeper game (Wikipediaonline game)!

You are given a 2D char matrix representing the game board. 'M' represents an unrevealed mine, 'E' represents an unrevealed empty square, 'B' represents a revealed blank square that has no adjacent (above, below, left, right, and all 4 diagonals) mines, digit ('1' to '8') represents how many mines are adjacent to this revealed square, and finally 'X' represents a revealed mine.

Now given the next click position (row and column indices) among all the unrevealed squares ('M' or 'E'), return the board after revealing this position according to the following rules:

  1. If a mine ('M') is revealed, then the game is over - change it to 'X'.
  2. If an empty square ('E') with no adjacent mines is revealed, then change it to revealed blank ('B') and all of its adjacent unrevealed squares should be revealed recursively.
  3. If an empty square ('E') with at least one adjacent mine is revealed, then change it to a digit ('1' to '8') representing the number of adjacent mines.
  4. Return the board when no more squares will be revealed.

Example 1:

Input: 

[['E', 'E', 'E', 'E', 'E'],
 ['E', 'E', 'M', 'E', 'E'],
 ['E', 'E', 'E', 'E', 'E'],
 ['E', 'E', 'E', 'E', 'E']]

Click : [3,0]

Output: 

[['B', '1', 'E', '1', 'B'],
 ['B', '1', 'M', '1', 'B'],
 ['B', '1', '1', '1', 'B'],
 ['B', 'B', 'B', 'B', 'B']]

Explanation:

Example 2:

Input: 

[['B', '1', 'E', '1', 'B'],
 ['B', '1', 'M', '1', 'B'],
 ['B', '1', '1', '1', 'B'],
 ['B', 'B', 'B', 'B', 'B']]

Click : [1,2]

Output: 

[['B', '1', 'E', '1', 'B'],
 ['B', '1', 'X', '1', 'B'],
 ['B', '1', '1', '1', 'B'],
 ['B', 'B', 'B', 'B', 'B']]

Explanation:

Note:

  1. The range of the input matrix's height and width is [1,50].
  2. The click position will only be an unrevealed square ('M' or 'E'), which also means the input board contains at least one clickable square.
  3. The input board won't be a stage when game is over (some mines have been revealed).
  4. For simplicity, not mentioned rules should be ignored in this problem. For example, you don't need to reveal all the unrevealed mines when the game is over, consider any cases that you will win the game or flag any squares.

思路: 搜索问题,就是dfs或者bfs,这种题目,感觉还是dfs好写,这次写了一个比较好理解的版本;用附近的8个点做坐标写的,很简洁;学习了。核心算法就是:如果遇见E,那么就计算附近的雷数,如果大于0,代表要赋值数目,否则变成B继续8个neighbor计算;直到把所有不是E的点算完;O(N*M);

class Solution {
    public char[][] updateBoard(char[][] board, int[] click) {
        if(board.length == 0 || board[0].length == 0 || click == null || click.length != 2) {
            return board;
        }
        int n = board.length;
        int m = board[0].length;
        int x = click[0]; int y = click[1];
        if(board[x][y] == 'M') {
            board[x][y] = 'X';
        } else {
            int[][] dirs = {{-1,-1}, {-1,0}, {-1, 1}, {0,-1}, {0,1}, {1,-1}, {1,0}, {1,1}};
            dfs(board, x, y, n, m, dirs);
        }
        return board;
    }
    
    private void dfs(char[][] board, int x, int y, int n, int m, int[][] dirs) {
        if(x < 0 || x >= n || y < 0 || y >= m || board[x][y] != 'E') {
            return;
        }
        int mine = getNeighborMine(board, x, y, n, m);
        if(mine > 0) {
            board[x][y] = (char)('0' + mine);
        } else {
            board[x][y] = 'B';
            for(int[] dir: dirs) {
                dfs(board, x + dir[0], y + dir[1], n, m, dirs);
            }
        }
    }
    
    private int getNeighborMine(char[][] board, int x, int y, int n, int m) {
        int count = 0;
        for(int i = x - 1; i <= x + 1; i++) {
            for(int j = y - 1; j <= y + 1; j++) {
                if(0 <= i && i < n && 0 <= j && j < m && board[i][j] == 'M') {
                    count++;
                }
            }
        }
        return count;
    }
}

 

 

相关阅读

相关文章

相关问答