tensorflow==2.2.0
import tensorflow as tf
import pathlib
import matplotlib.pyplot as plt
import numpy as np
dataset1 = tf.data.Dataset.from_tensor_slices(tf.random.uniform([4,10]))
print(dataset1.element_spec) # 查看的是每一个element的属性
for element in dataset1:
print(element)
shuchu
TensorSpec(shape=(10,), dtype=tf.float32, name=None) # a single tuple
tf.Tensor(
[0.767676 0.73015213 0.5323138 0.50220263 0.95328426 0.19030821
0.80313885 0.7522975 0.38625753 0.55641997], shape=(10,), dtype=float32)
tf.Tensor(
[0.02963817 0.6099347 0.94547665 0.51258385 0.45178926 0.9401567
0.6142694 0.8651656 0.47888255 0.6972141 ], shape=(10,), dtype=float32)
tf.Tensor(
[0.1285268 0.9309876 0.5018612 0.3873167 0.98936284 0.35167396
0.5177171 0.8133037 0.03449237 0.9925858 ], shape=(10,), dtype=float32)
tf.Tensor(
[0.24921525 0.45211852 0.5103594 0.30220544 0.30971515 0.15253949
0.00923371 0.22665703 0.8954836 0.2224822 ], shape=(10,), dtype=float32)
import tensorflow as tf
# for two
dataset2 = tf.data.Dataset.from_tensor_slices(
(tf.random.uniform([4]),
tf.random.uniform([4,100]))
)
print(dataset2.element_spec)
dataset3 = tf.data.Dataset.from_tensor_slices((tf.random.uniform([4])))
for element in dataset3:
print(element)
输出
(TensorSpec(shape=(), dtype=tf.float32, name=None), TensorSpec(shape=(100,), dtype=tf.float32, name=None)) # a tuple of component
tf.Tensor(0.17025971, shape=(), dtype=float32)
tf.Tensor(0.49341345, shape=(), dtype=float32)
tf.Tensor(0.49253404, shape=(), dtype=float32)
tf.Tensor(0.8137529, shape=(), dtype=float32)
import tensorflow as tf
dataset1 = tf.data.Dataset.from_tensor_slices(tf.random.uniform([4,10])) # a single component
dataset2 = tf.data.Dataset.from_tensor_slices((
tf.random.uniform([4]),
tf.random.uniform([4,100],maxval=100,dtype=tf.int32)
))
dataset3 = tf.data.Dataset.zip((dataset1,
shuchu
(TensorSpec(shape=(10,), dtype=tf.float32, name=None), (TensorSpec(shape=(), dtype=tf.float32, name=None), TensorSpec(shape=(100,), dtype=tf.int32, name=None)))