对于给定的整数 a , b 和 d ,有多少正整数对 x , y ,满足 x ≤ a , y ≤ b ,并且 g c d ( x , y ) = d 。 对于给定的整数 a,b 和 d,有多少正整数对 x,y,满足 x≤a,y≤b,并且 gcd(x,y)=d。 对于给定的整数a,b和d,有多少正整数对x,y,满足x≤a,y≤b,并且gcd(x,y)=d。
( 1 ≤ n ≤ 50000 , 1 ≤ d ≤ a , b ≤ 50000 ) (1≤n≤50000,1≤d≤a,b≤50000) (1≤n≤50000,1≤d≤a,b≤50000)
或者《算法竞赛进阶指南》数论部分 P 179 P_{179} P179页
#include<bits/stdc++.h>
using namespace std;
const int N = 50010;
typedef long long ll;
int v[N];
int prime[N], mobius[N], sum[N], m;
//线性筛写法
void Mobius() {
mobius[1] = 1;
m = 0;
for (int i = 2; i < N; i++)
{
if (!v[i]) {
v[i] = i;
prime[++m] = i;
mobius[i] = -1;
}
for (int j = 1; j <= m; j++)
{
if (prime[j] > v[i] || prime[j] > N / i) break;
int t = prime[j] * i;
v[t] = prime[j];
if (i % prime[j] == 0) mobius[t] = 0;
else mobius[t] = mobius[i] * -1;
}
}
for (int i = 1; i < N; ++i) sum[i] = sum[i - 1] + mobius[i];//求前缀和,优化时间
}
//埃氏筛写法
void Mobius2()
{
for (int i = 1; i < N; i++) mobius[i] = 1, v[i] = 0;
for (int i = 2; i < N; i++)
{
if (v[i]) continue;
mobius[i] = -1;
for (int j = 2 * i; j < N; j += i)
{
v[j] = 1;
if ((j / i) % i == 0) mobius[j] = 0;
else mobius[j] *= -1;
}
}
for (int i = 1; i < N; i++) sum[i] = sum[i - 1] + mobius[i];
}
int main() {
Mobius();
int T;
scanf("%d", &T);
while (T--)
{
int a, b, d, m, n;
scanf("%d%d%d", &a, &b, &d);
a /= d, b /= d;
n = min(a, b);
ll res = 0;
for (int l = 1, r; l <= n; l = r + 1)
{
r = min(n, min(a / (a / l), b / (b / l)));
res += (sum[r] - sum[l - 1]) * 1ll * (a / l) * (b / l);//注意处理运算过程爆int
}
printf("%lld\n", res);
}
return 0;
}