当前位置: 首页 > 工具软件 > Netpoll-http2 > 使用案例 >

【go语言之http server源码分析】

程俊健
2023-12-01

在前面的文章 go实现tcp升级到http中描述了如何从tcp升级到http。熟悉tcp都是知道,实现tcp需要socket,bind,listen,然后accept。然后对于io来说,有阻塞,非阻塞,多路复用,异步几种模式。
对于阻塞和非阻塞是可以调用底层函数fcntl将套接字设置为非阻塞,然后多路复用就很常见了,select,poll,epoll。详细的描述见 Go netpoll分析
里面描述的比较清楚。
这里需要注意的对于go来说,为了最大化去调度goroutine,而不是为了陷入底层的调用,这里go的做法是在创建完套接字之后,就会设置成非阻塞,然后通过调用gopark挂起当前goroutine,然后将底层的线程去执行其他goroutine,然后通过通过epoll_wait去查询有没有可以执行的goroutine。这样就最大化使用线程的资源。
然后go使用了每有一个链接创建,就会开启一个goroutine去处理这个连接。因为goroutine底层做了复用,再加上开销非常小,所以通常是没问题,但是在高并发场景下,就会有大量的goroutine创建处理,导致内存上涨,同时就会导致gc压力变大,因此可能就会拖慢程序的性能。
因此对于redis和netty等使用的reactor网络模型,这种模型准确来说是一个事件驱动的网络模型。大致来说,就是一个主reactor进行监听底层时间的变更,如果有 新连接/读/写 等事件后,便会被唤醒并且将这个时间放入到事件池中,这样就不会无线创建goroutine,同时也保证整个流程没有阻塞。接下来简单看一下代码

go 原生服务端

先看一段基于go的原生http server的代码。

package main

import (
	"fmt"
	"net/http"
	"time"
)

func index(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "text/html")

	html := `<doctype html>
        <html>
        <head>
          <title>Hello World</title>
        </head>
        <body>
        <p>
          <a href="/welcome">Welcome</a> |  <a href="/message">Message</a>
        </p>
        </body>
</html>`
	fmt.Fprintln(w, html)
}

func main() {
	mux := http.NewServeMux()

	mux.HandleFunc("/", index)

	server := &http.Server{
		Addr:         ":8010",
		ReadTimeout:  60 * time.Second,
		WriteTimeout: 2 * time.Second,
		Handler:      mux,
	}
	server.ListenAndServe()
}

然后这里主要就是server这个结构体,然后看一下

// A Server defines parameters for running an HTTP server.
// The zero value for Server is a valid configuration.
type Server struct {
	// Addr optionally specifies the TCP address for the server to listen on,
	// in the form "host:port". If empty, ":http" (port 80) is used.
	// The service names are defined in RFC 6335 and assigned by IANA.
	// See net.Dial for details of the address format.
	Addr string

	Handler Handler // handler to invoke, http.DefaultServeMux if nil

	// TLSConfig optionally provides a TLS configuration for use
	// by ServeTLS and ListenAndServeTLS. Note that this value is
	// cloned by ServeTLS and ListenAndServeTLS, so it's not
	// possible to modify the configuration with methods like
	// tls.Config.SetSessionTicketKeys. To use
	// SetSessionTicketKeys, use Server.Serve with a TLS Listener
	// instead.
	TLSConfig *tls.Config

	// ReadTimeout is the maximum duration for reading the entire
	// request, including the body. A zero or negative value means
	// there will be no timeout.
	//
	// Because ReadTimeout does not let Handlers make per-request
	// decisions on each request body's acceptable deadline or
	// upload rate, most users will prefer to use
	// ReadHeaderTimeout. It is valid to use them both.
	ReadTimeout time.Duration

	// ReadHeaderTimeout is the amount of time allowed to read
	// request headers. The connection's read deadline is reset
	// after reading the headers and the Handler can decide what
	// is considered too slow for the body. If ReadHeaderTimeout
	// is zero, the value of ReadTimeout is used. If both are
	// zero, there is no timeout.
	ReadHeaderTimeout time.Duration

	// WriteTimeout is the maximum duration before timing out
	// writes of the response. It is reset whenever a new
	// request's header is read. Like ReadTimeout, it does not
	// let Handlers make decisions on a per-request basis.
	// A zero or negative value means there will be no timeout.
	WriteTimeout time.Duration

	// IdleTimeout is the maximum amount of time to wait for the
	// next request when keep-alives are enabled. If IdleTimeout
	// is zero, the value of ReadTimeout is used. If both are
	// zero, there is no timeout.
	IdleTimeout time.Duration

	// MaxHeaderBytes controls the maximum number of bytes the
	// server will read parsing the request header's keys and
	// values, including the request line. It does not limit the
	// size of the request body.
	// If zero, DefaultMaxHeaderBytes is used.
	MaxHeaderBytes int

	// TLSNextProto optionally specifies a function to take over
	// ownership of the provided TLS connection when an ALPN
	// protocol upgrade has occurred. The map key is the protocol
	// name negotiated. The Handler argument should be used to
	// handle HTTP requests and will initialize the Request's TLS
	// and RemoteAddr if not already set. The connection is
	// automatically closed when the function returns.
	// If TLSNextProto is not nil, HTTP/2 support is not enabled
	// automatically.
	TLSNextProto map[string]func(*Server, *tls.Conn, Handler)

	// ConnState specifies an optional callback function that is
	// called when a client connection changes state. See the
	// ConnState type and associated constants for details.
	ConnState func(net.Conn, ConnState)

	// ErrorLog specifies an optional logger for errors accepting
	// connections, unexpected behavior from handlers, and
	// underlying FileSystem errors.
	// If nil, logging is done via the log package's standard logger.
	ErrorLog *log.Logger

	// BaseContext optionally specifies a function that returns
	// the base context for incoming requests on this server.
	// The provided Listener is the specific Listener that's
	// about to start accepting requests.
	// If BaseContext is nil, the default is context.Background().
	// If non-nil, it must return a non-nil context.
	BaseContext func(net.Listener) context.Context

	// ConnContext optionally specifies a function that modifies
	// the context used for a new connection c. The provided ctx
	// is derived from the base context and has a ServerContextKey
	// value.
	ConnContext func(ctx context.Context, c net.Conn) context.Context

	inShutdown atomicBool // true when server is in shutdown

	disableKeepAlives int32     // accessed atomically.
	nextProtoOnce     sync.Once // guards setupHTTP2_* init
	nextProtoErr      error     // result of http2.ConfigureServer if used

	mu         sync.Mutex
	listeners  map[*net.Listener]struct{}
	activeConn map[*conn]struct{}
	doneChan   chan struct{}
	onShutdown []func()

	listenerGroup sync.WaitGroup
}

ListenAndServe

这个其实就是Listen Accept Server,这三个结合在一起,然后看一下具体的实现。

// ListenAndServe listens on the TCP network address srv.Addr and then
// calls Serve to handle requests on incoming connections.
// Accepted connections are configured to enable TCP keep-alives.
//
// If srv.Addr is blank, ":http" is used.
//
// ListenAndServe always returns a non-nil error. After Shutdown or Close,
// the returned error is ErrServerClosed.
func (srv *Server) ListenAndServe() error {
	if srv.shuttingDown() {
		return ErrServerClosed
	}
	addr := srv.Addr
	if addr == "" {
		addr = ":http"
	}
	// 这里就是调用的socket bind listen 返回的套接字 然后设置成了非阻塞的 然后封装好了进行了返回
	// 上面的文章有很项目的描述
	ln, err := net.Listen("tcp", addr)
	if err != nil {
		return err
	}
	return srv.Serve(ln)
}

然后看一下Serve的方法

// Serve accepts incoming connections on the Listener l, creating a
// new service goroutine for each. The service goroutines read requests and
// then call srv.Handler to reply to them.
//
// HTTP/2 support is only enabled if the Listener returns *tls.Conn
// connections and they were configured with "h2" in the TLS
// Config.NextProtos.
//
// Serve always returns a non-nil error and closes l.
// After Shutdown or Close, the returned error is ErrServerClosed.
func (srv *Server) Serve(l net.Listener) error {
	if fn := testHookServerServe; fn != nil {
		fn(srv, l) // call hook with unwrapped listener
	}
   
    // 复制一份
	origListener := l
	l = &onceCloseListener{Listener: l}
	defer l.Close()

    // 判断是否实现了http2
	if err := srv.setupHTTP2_Serve(); err != nil {
		return err
	}
   
    // 
	if !srv.trackListener(&l, true) {
		return ErrServerClosed
	}
	defer srv.trackListener(&l, false)
  
    // 原始的ctx
	baseCtx := context.Background()
  
    // 判断是否有设置ctx
	if srv.BaseContext != nil {
		baseCtx = srv.BaseContext(origListener)
		if baseCtx == nil {
			panic("BaseContext returned a nil context")
		}
	}

	var tempDelay time.Duration // how long to sleep on accept failure

	ctx := context.WithValue(baseCtx, ServerContextKey, srv)
	for {
	    // 调用Acccept方法,等待新的链接
		rw, err := l.Accept()
		
		// 删掉一些无用的代码
  
        // 返回下面的Conn
		c := srv.newConn(rw)
		
		// 去获取context
		connCtx := ctx
		if cc := srv.ConnContext; cc != nil {
			connCtx = cc(connCtx, rw)
			if connCtx == nil {
				panic("ConnContext returned nil")
			}
		}
  
        // 记录连接 调用hook
		c.setState(c.rwc, StateNew, runHooks) // before Serve can return
        // 新开启一个goroutine 去处理连接
		go c.serve(connCtx)
	}
}

// Create new connection from rwc.
func (srv *Server) newConn(rwc net.Conn) *conn {
	c := &conn{
		server: srv,
		rwc:    rwc,
	}
	if debugServerConnections {
		c.rwc = newLoggingConn("server", c.rwc)
	}
	return c
}

serve

// Serve a new connection.
func (c *conn) serve(ctx context.Context) {
    // 远端地址
	c.remoteAddr = c.rwc.RemoteAddr().String()
    // 存入当前地址
	ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr())
	var inFlightResponse *response
  
    // 去掉了异常处理和https的处理
	 
	// HTTP/1.x from here on.
    // 获取超时ctx
	ctx, cancelCtx := context.WithCancel(ctx)
	c.cancelCtx = cancelCtx
	defer cancelCtx()
   
    // 生成read和write的buf
	c.r = &connReader{conn: c}
	c.bufr = newBufioReader(c.r)
	c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)

	for {
	    // 读取request 并且获取response对象
		w, err := c.readRequest(ctx)
		if c.r.remain != c.server.initialReadLimitSize() {
			// If we read any bytes off the wire, we're active.
			c.setState(c.rwc, StateActive, runHooks)
		}
		// 去掉err的判断

        // 忽略对于100-continue请求码的处理

        // 储存curReq
		c.curReq.Store(w)

		if requestBodyRemains(req.Body) {
			registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead)
		} else {
		    // 这个是为了后台监控线程 如果有问题那么将conn给取消
			w.conn.r.startBackgroundRead()
		}

		// HTTP cannot have multiple simultaneous active requests.[*]
		// Until the server replies to this request, it can't read another,
		// so we might as well run the handler in this goroutine.
		// [*] Not strictly true: HTTP pipelining. We could let them all process
		// in parallel even if their responses need to be serialized.
		// But we're not going to implement HTTP pipelining because it
		// was never deployed in the wild and the answer is HTTP/2.
		inFlightResponse = w
		// 调用ServeHTTP 方法
		serverHandler{c.server}.ServeHTTP(w, w.req)
		inFlightResponse = nil
  
        // 完成了请求
		w.cancelCtx()
		if c.hijacked() {
			return
		}
		// 结束请求 
		w.finishRequest()
		if !w.shouldReuseConnection() {
			if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
				c.closeWriteAndWait()
			}
			return
		}
		c.setState(c.rwc, StateIdle, runHooks)
		c.curReq.Store((*response)(nil))

		if !w.conn.server.doKeepAlives() {
			// We're in shutdown mode. We might've replied
			// to the user without "Connection: close" and
			// they might think they can send another
			// request, but such is life with HTTP/1.1.
			return
		}

		if d := c.server.idleTimeout(); d != 0 {
			c.rwc.SetReadDeadline(time.Now().Add(d))
			if _, err := c.bufr.Peek(4); err != nil {
				return
			}
		}
		// 重置读的超时
		c.rwc.SetReadDeadline(time.Time{})
	}
}

这样看其实server端的处理并不困难,主要流程就是accept,然后处理请求,然后异步监控线程,然后调用用户传的ServeHTTP方法,然后重置读取的超时时间。
接下来这几步。

readRequest

readRequest 这个就是从tcp层读取请求,然后封装到request中,并且返回response中。

// Read next request from connection.
func (c *conn) readRequest(ctx context.Context) (w *response, err error) {
	if c.hijacked() {
		return nil, ErrHijacked
	}
  
    // 调用的超时时间
	var (
		wholeReqDeadline time.Time // or zero if none
		hdrDeadline      time.Time // or zero if none
	)
	// 当前时间
	t0 := time.Now()
	// 读取header 超时时间
	if d := c.server.readHeaderTimeout(); d > 0 {
		hdrDeadline = t0.Add(d)
	}
	// 请求的读取超时时间
	if d := c.server.ReadTimeout; d > 0 {
		wholeReqDeadline = t0.Add(d)
	}
	// 设置超时时间
	c.rwc.SetReadDeadline(hdrDeadline)
	if d := c.server.WriteTimeout; d > 0 {
		defer func() {
			c.rwc.SetWriteDeadline(time.Now().Add(d))
		}()
	}
    // 设置初始化读取的长度
	c.r.setReadLimit(c.server.initialReadLimitSize())
	if c.lastMethod == "POST" {
		// RFC 7230 section 3 tolerance for old buggy clients.
		peek, _ := c.bufr.Peek(4) // ReadRequest will get err below
		c.bufr.Discard(numLeadingCRorLF(peek))
	}
	// 从tcp中读取 主要是将tcp中的url header读取出来封装到request
	req, err := readRequest(c.bufr)
	if err != nil {
		if c.r.hitReadLimit() {
			return nil, errTooLarge
		}
		return nil, err
	}
    // 判断是否支持
	if !http1ServerSupportsRequest(req) {
		return nil, statusError{StatusHTTPVersionNotSupported, "unsupported protocol version"}
	}
    
	c.lastMethod = req.Method
	c.r.setInfiniteReadLimit()

    // 异常判断
	hosts, haveHost := req.Header["Host"]
	isH2Upgrade := req.isH2Upgrade()
	if req.ProtoAtLeast(1, 1) && (!haveHost || len(hosts) == 0) && !isH2Upgrade && req.Method != "CONNECT" {
		return nil, badRequestError("missing required Host header")
	}
	if len(hosts) == 1 && !httpguts.ValidHostHeader(hosts[0]) {
		return nil, badRequestError("malformed Host header")
	}
	for k, vv := range req.Header {
		if !httpguts.ValidHeaderFieldName(k) {
			return nil, badRequestError("invalid header name")
		}
		for _, v := range vv {
			if !httpguts.ValidHeaderFieldValue(v) {
				return nil, badRequestError("invalid header value")
			}
		}
	}
	
	delete(req.Header, "Host")

	ctx, cancelCtx := context.WithCancel(ctx)
	req.ctx = ctx
	req.RemoteAddr = c.remoteAddr
	req.TLS = c.tlsState
	if body, ok := req.Body.(*body); ok {
		body.doEarlyClose = true
	}

	// Adjust the read deadline if necessary.
	if !hdrDeadline.Equal(wholeReqDeadline) {
		c.rwc.SetReadDeadline(wholeReqDeadline)
	}
    // 封装response
	w = &response{
		conn:          c,
		cancelCtx:     cancelCtx,
		req:           req,
		reqBody:       req.Body,
		handlerHeader: make(Header),
		contentLength: -1,
		closeNotifyCh: make(chan bool, 1),

		// We populate these ahead of time so we're not
		// reading from req.Header after their Handler starts
		// and maybe mutates it (Issue 14940)
		wants10KeepAlive: req.wantsHttp10KeepAlive(),
		wantsClose:       req.wantsClose(),
	}
	if isH2Upgrade {
		w.closeAfterReply = true
	}
	// 实例化response的write
	w.cw.res = w
	w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize)
	return w, nil
}

整体的流程是比较好理解的,这里主要是看一下 底层连接实现读写超时是如何实现的,也就是net包下面的Conn结构体的SetDeadline,SetReadDeadline,SetWriteDeadline。

// Conn is a generic stream-oriented network connection.
//
// Multiple goroutines may invoke methods on a Conn simultaneously.
type Conn interface {
	// Read reads data from the connection.
	// Read can be made to time out and return an error after a fixed
	// time limit; see SetDeadline and SetReadDeadline.
	Read(b []byte) (n int, err error)

	// Write writes data to the connection.
	// Write can be made to time out and return an error after a fixed
	// time limit; see SetDeadline and SetWriteDeadline.
	Write(b []byte) (n int, err error)

	// Close closes the connection.
	// Any blocked Read or Write operations will be unblocked and return errors.
	Close() error

	// LocalAddr returns the local network address, if known.
	LocalAddr() Addr

	// RemoteAddr returns the remote network address, if known.
	RemoteAddr() Addr

	// SetDeadline sets the read and write deadlines associated
	// with the connection. It is equivalent to calling both
	// SetReadDeadline and SetWriteDeadline.
	//
	// A deadline is an absolute time after which I/O operations
	// fail instead of blocking. The deadline applies to all future
	// and pending I/O, not just the immediately following call to
	// Read or Write. After a deadline has been exceeded, the
	// connection can be refreshed by setting a deadline in the future.
	//
	// If the deadline is exceeded a call to Read or Write or to other
	// I/O methods will return an error that wraps os.ErrDeadlineExceeded.
	// This can be tested using errors.Is(err, os.ErrDeadlineExceeded).
	// The error's Timeout method will return true, but note that there
	// are other possible errors for which the Timeout method will
	// return true even if the deadline has not been exceeded.
	//
	// An idle timeout can be implemented by repeatedly extending
	// the deadline after successful Read or Write calls.
	//
	// A zero value for t means I/O operations will not time out.
	SetDeadline(t time.Time) error

	// SetReadDeadline sets the deadline for future Read calls
	// and any currently-blocked Read call.
	// A zero value for t means Read will not time out.
	SetReadDeadline(t time.Time) error

	// SetWriteDeadline sets the deadline for future Write calls
	// and any currently-blocked Write call.
	// Even if write times out, it may return n > 0, indicating that
	// some of the data was successfully written.
	// A zero value for t means Write will not time out.
	SetWriteDeadline(t time.Time) error
}

先看看具体的的实现

func (fd *netFD) SetDeadline(t time.Time) error {
	return fd.pfd.SetDeadline(t)
}

func (fd *netFD) SetReadDeadline(t time.Time) error {
	return fd.pfd.SetReadDeadline(t)
}

func (fd *netFD) SetWriteDeadline(t time.Time) error {
	return fd.pfd.SetWriteDeadline(t)
}
// SetDeadline sets the read and write deadlines associated with fd.
func (fd *FD) SetDeadline(t time.Time) error {
	return setDeadlineImpl(fd, t, 'r'+'w')
}

// SetReadDeadline sets the read deadline associated with fd.
func (fd *FD) SetReadDeadline(t time.Time) error {
	return setDeadlineImpl(fd, t, 'r')
}

// SetWriteDeadline sets the write deadline associated with fd.
func (fd *FD) SetWriteDeadline(t time.Time) error {
	return setDeadlineImpl(fd, t, 'w')
}

可以看出来这三个都是调用setDeadlineImpl,只是传入的mode不一样,r代表的是read,w代表的是write,然后r和w就是r和w都会生效。所以主要是看一下setDeadlineImpl这个方法

func setDeadlineImpl(fd *FD, t time.Time, mode int) error {
	var d int64
	// 判断是否设置了值,如果有设置那么加上
	if !t.IsZero() {
		d = int64(time.Until(t))
		if d == 0 {
			d = -1 // don't confuse deadline right now with no deadline
		}
	}
	// 判断fd是否正常 新增reference到fd上
	if err := fd.incref(); err != nil {
		return err
	}
	// 去掉reference
	defer fd.decref()
   
    // 判断是否有runtimeCtx
	if fd.pd.runtimeCtx == 0 {
		return ErrNoDeadline
	}
	// 最终调用runtime_pollSetDeadline这个方法 这个方法是在runtime下面的实现
	runtime_pollSetDeadline(fd.pd.runtimeCtx, d, mode)
	return nil
}

//go:linkname poll_runtime_pollSetDeadline internal/poll.runtime_pollSetDeadline
func poll_runtime_pollSetDeadline(pd *pollDesc, d int64, mode int) {
	lock(&pd.lock)
	if pd.closing {
		unlock(&pd.lock)
		return
	}
	// 当前的是否已经存在设置的deadline
	rd0, wd0 := pd.rd, pd.wd
	combo0 := rd0 > 0 && rd0 == wd0
	// 超时时间大于0
	if d > 0 {
		d += nanotime()
		if d <= 0 {
			// If the user has a deadline in the future, but the delay calculation
			// overflows, then set the deadline to the maximum possible value.
			d = 1<<63 - 1
		}
	}
	// 判断设置的模式
	if mode == 'r' || mode == 'r'+'w' {
		pd.rd = d
	}
	if mode == 'w' || mode == 'r'+'w' {
		pd.wd = d
	}
	
	pd.publishInfo()
	combo := pd.rd > 0 && pd.rd == pd.wd
 
    // 设置回调函数
	rtf := netpollReadDeadline
	if combo {
		rtf = netpollDeadline
	}
	if pd.rt.f == nil {
		if pd.rd > 0 {
			pd.rt.f = rtf
			// Copy current seq into the timer arg.
			// Timer func will check the seq against current descriptor seq,
			// if they differ the descriptor was reused or timers were reset.
			pd.rt.arg = pd.makeArg()
			pd.rt.seq = pd.rseq
			resettimer(&pd.rt, pd.rd)
		}
	} else if pd.rd != rd0 || combo != combo0 {
		pd.rseq++ // invalidate current timers
		if pd.rd > 0 {
			modtimer(&pd.rt, pd.rd, 0, rtf, pd.makeArg(), pd.rseq)
		} else {
			deltimer(&pd.rt)
			pd.rt.f = nil
		}
	}
	if pd.wt.f == nil {
		if pd.wd > 0 && !combo {
			pd.wt.f = netpollWriteDeadline
			pd.wt.arg = pd.makeArg()
			pd.wt.seq = pd.wseq
			resettimer(&pd.wt, pd.wd)
		}
	} else if pd.wd != wd0 || combo != combo0 {
		pd.wseq++ // invalidate current timers
		if pd.wd > 0 && !combo {
			modtimer(&pd.wt, pd.wd, 0, netpollWriteDeadline, pd.makeArg(), pd.wseq)
		} else {
			deltimer(&pd.wt)
			pd.wt.f = nil
		}
	}
	// If we set the new deadline in the past, unblock currently pending IO if any.
	// Note that pd.publishInfo has already been called, above, immediately after modifying rd and wd.
	// 将之前阻塞的线程进行恢复
	var rg, wg *g
	if pd.rd < 0 {
		rg = netpollunblock(pd, 'r', false)
	}
	if pd.wd < 0 {
		wg = netpollunblock(pd, 'w', false)
	}
	unlock(&pd.lock)
	if rg != nil {
		netpollgoready(rg, 3)
	}
	if wg != nil {
		netpollgoready(wg, 3)
	}
}

可以看出来主要就是调用了resettimer 和 modtimer方法,这个看过之前写的timer的源码都知道,这个其实就是在当前P上面绑定一个计时器,然后通过findrunable函数,需要可以执行的goroutine。
然后正常状态下面的goroutine在调用read和write是会阻塞的,但是不是阻塞在了内核态,因为设置成了非阻塞,然后被go的runtime给挂起了。
所以这个serDeadline并不是调用了底层函数,而且也是在用户态去做的,当超时时间到了,runtime会将挂起来的goroutine设置为可运行。

startBackgroundRead

这个主要是在后台监控连接是否有异常。

func (cr *connReader) startBackgroundRead() {
	cr.lock()
	defer cr.unlock()
	if cr.inRead {
		panic("invalid concurrent Body.Read call")
	}
	
	if cr.hasByte {
		return
	}
	cr.inRead = true
	// 取消读取的超时设置
	cr.conn.rwc.SetReadDeadline(time.Time{})
	// 开启后台的读取
	go cr.backgroundRead()
}
func (cr *connReader) backgroundRead() {
    // 进行读取 如果有进行加锁
	n, err := cr.conn.rwc.Read(cr.byteBuf[:])
	cr.lock()
	if n == 1 {
		cr.hasByte = true
		// We were past the end of the previous request's body already
		// (since we wouldn't be in a background read otherwise), so
		// this is a pipelined HTTP request. Prior to Go 1.11 we used to
		// send on the CloseNotify channel and cancel the context here,
		// but the behavior was documented as only "may", and we only
		// did that because that's how CloseNotify accidentally behaved
		// in very early Go releases prior to context support. Once we
		// added context support, people used a Handler's
		// Request.Context() and passed it along. Having that context
		// cancel on pipelined HTTP requests caused problems.
		// Fortunately, almost nothing uses HTTP/1.x pipelining.
		// Unfortunately, apt-get does, or sometimes does.
		// New Go 1.11 behavior: don't fire CloseNotify or cancel
		// contexts on pipelined requests. Shouldn't affect people, but
		// fixes cases like Issue 23921. This does mean that a client
		// closing their TCP connection after sending a pipelined
		// request won't cancel the context, but we'll catch that on any
		// write failure (in checkConnErrorWriter.Write).
		// If the server never writes, yes, there are still contrived
		// server & client behaviors where this fails to ever cancel the
		// context, but that's kinda why HTTP/1.x pipelining died
		// anyway.
	}
	if ne, ok := err.(net.Error); ok && cr.aborted && ne.Timeout() {
		// Ignore this error. It's the expected error from
		// another goroutine calling abortPendingRead.
	} else if err != nil {
	    // 如果连接异常进行取消操作
		cr.handleReadError(err)
	}
	cr.aborted = false
	cr.inRead = false
	cr.unlock()
	// 通知等待的地方取消等待
	cr.cond.Broadcast()
}
// handleReadError is called whenever a Read from the client returns a
// non-nil error.
//
// The provided non-nil err is almost always io.EOF or a "use of
// closed network connection". In any case, the error is not
// particularly interesting, except perhaps for debugging during
// development. Any error means the connection is dead and we should
// down its context.
//
// It may be called from multiple goroutines.
func (cr *connReader) handleReadError(_ error) {
	cr.conn.cancelCtx()
	cr.closeNotify()
}

finishRequest

结束请求后的操作

func (w *response) finishRequest() {
    // 设置状态
	w.handlerDone.setTrue()

	if !w.wroteHeader {
		w.WriteHeader(StatusOK)
	}
    // flush到内核中
	w.w.Flush()
	putBufioWriter(w.w)
	w.cw.close()
	w.conn.bufw.Flush()
   // 取消等待
	w.conn.r.abortPendingRead()

	// Close the body (regardless of w.closeAfterReply) so we can
	// re-use its bufio.Reader later safely.
	w.reqBody.Close()

	if w.req.MultipartForm != nil {
		w.req.MultipartForm.RemoveAll()
	}
}

func (cr *connReader) abortPendingRead() {
	cr.lock()
	defer cr.unlock()
	if !cr.inRead {
		return
	}
	// 设置取消
	cr.aborted = true
	// 设置成里面取消
	cr.conn.rwc.SetReadDeadline(aLongTimeAgo)
	for cr.inRead {
		cr.cond.Wait()
	}
	cr.conn.rwc.SetReadDeadline(time.Time{})
}

执行完了,会接续会accept新的连接。

 类似资料: