高斯消元第五题,貌似只有这种套路了,还是我见识少。反正你们大家不要骗我~!
题目大意:
给出由灯组成的5*6的矩阵。当使某一个灯的状态改变时,它相邻的(边相邻,也就是上下左右的,如果有的话)灯的状态也改变。问改变那些灯的状态可以使所有的灯熄灭。
解题思路:
30个灯,代表着30个方程。方程的表示是操作那些灯对当前灯有影响。
最后就是高斯消元解方程了,不过是模2的。
下面是代码:
#include <set>
#include <map>
#include <queue>
#include <math.h>
#include <vector>
#include <string>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#define eps 1e-6
#define pi acos(-1.0)
#define inf 107374182
#define inf64 1152921504606846976
#define lc l,m,tr<<1
#define rc m + 1,r,tr<<1|1
#define iabs(x) ((x) > 0 ? (x) : -(x))
#define clear1(A, X, SIZE) memset(A, X, sizeof(A[0]) * (SIZE))
#define clearall(A, X) memset(A, X, sizeof(A))
#define memcopy1(A , X, SIZE) memcpy(A , X ,sizeof(X[0])*(SIZE))
#define memcopyall(A, X) memcpy(A , X ,sizeof(X))
#define max( x, y ) ( ((x) > (y)) ? (x) : (y) )
#define min( x, y ) ( ((x) < (y)) ? (x) : (y) )
using namespace std;
struct node
{
long long num[35];
node()
{
clearall(num,0);
}
void clen()
{
clearall(num,0);
}
};
struct node matrix[35];
int n,m,len;
bool free_x[35];
long long X[35],p;
void Debug(void)
{
puts("");
int i, j;
for (i = 0; i < m; i++)
{
for (j = 0; j < n + 1; j++)
{
cout << matrix[i].num[j] << " ";
}
cout << endl;
}
cout << endl;
}
int Guass()
{
int i,j,k,col;
clearall(X,0);
clearall(free_x,1);//把解集清空,所有变量都标为自由变量
for (k = 0,col = 0; k < m && col < n; ++k, ++col) //枚举行列
{
//printf("%d\n",k);
//Debug();
int max_r = k;//找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
while(matrix[max_r].num[col]==0&&max_r<m)max_r++;
/*for (i = k + 1; i < m; ++i)
{
if (iabs(matrix[i].num[col]) > iabs(matrix[max_r].num[col])) max_r = i;
}*/
if (max_r != k) //交换
{
for (i = k; i < n + 1; ++i) swap(matrix[k].num[i],matrix[max_r].num[i]);
}
/*if (matrix[k].num[col]!=0 ) //如果对应该列都为0,枚举该行的下一列
{
k--;
continue;
}*/
for (i = k + 1; i < m; ++i) //将k后边的col进行初等变换成行阶梯矩阵
{
if (matrix[i].num[col]!=0)
{
long long x1=matrix[i].num[col],x2=matrix[k].num[col];
for (j = col; j < n + 1; ++j)
{
matrix[i].num[j] = matrix[i].num[j] *x2- x1*matrix[k].num[j];
matrix[i].num[j] = (matrix[i].num[j]%p+p)%p;
}
//Debug();
}
}
}
//Debug();
// 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0). 即R(A) != R(A')无解
/*for (i = k; i < m; ++i)
{
if (iabs(matrix[i].num[col]) >eps) return -1;
}*/
// 2. 无穷解的情况: 在n * (n + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
// 且出现的行数即为自由变元的个数. 即R(A) = R(A') < n
//printf("%d %d\n",k,n);
/*if (k < n)
{
//注释处为求多解的自由变量
// 首先,自由变元有n - k个,即不确定的变元至少有n - k个.
int num = 0,freeidx;
for (i = k - 1; i >= 0; --i)
{
num = 0;// 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
double tmp = matrix[i].num[n];
// 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第m行.
// 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.
for (j = 0; j < n; ++j)
{
if (iabs(matrix[i].num[j]) > eps && free_x[j])
{
num++;
freeidx = j;
}
}
if (num > 1) continue; // 无法求解出确定的变元.
// 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
tmp = matrix[i].num[n];
for (j = 0; j < n; ++j)
{
if (iabs(matrix[i].num[j])>eps && j != freeidx) tmp -= matrix[i].num[j]*X[j];
}
X[freeidx] = tmp/matrix[i].num[freeidx];
free_x[freeidx] = 0;
}
return n - k;
}*/
// 3. 唯一解的情况: 在n * (n + 1)的增广阵中形成严格的上三角阵.
// 计算出Xn-1, Xn-2 ... X0.
for (i = k - 1; i >= 0; --i)
{
long long tmp = matrix[i].num[n];
for (j = i + 1; j < n; ++j)
{
tmp =((tmp- matrix[i].num[j]*X[j])%p+p)%p;
}
while(tmp%matrix[i].num[i])tmp+=p;
X[i] = ((tmp/matrix[i].num[i])%p+p)%p;
}
return 0;
}
const char s[9][10]= {"ABDE","ABC","BCEF","ADG","BDEFH","CFI","DEGH","GHI","EFHI"};
const int num[9]= {4,3,4,3,5,3,4,3,4};
int main()
{
int T,case1=1;
scanf("%d",&T);
p=2;
n=30;
m=30;
while(T--)
{
clearall(matrix,0);
for(int i=0; i<5; i++)
{
for(int j=0; j<6; j++)
{
scanf("%d",&matrix[i*6+j].num[n]);
matrix[i*6+j].num[i*6+j]=1;
if(j>0)matrix[i*6+j-1].num[i*6+j]=1;
if(j+1<6)matrix[i*6+j+1].num[i*6+j]=1;
if(i>0)matrix[(i-1)*6+j].num[i*6+j]=1;
if(i+1<5)matrix[(i+1)*6+j].num[i*6+j]=1;
}
}
//Debug();
Guass();
//Debug();
int cnt=0;
bool flat=false;
printf("PUZZLE #%d\n",case1++);
for(int i=0; i<n; i++)
{
if(flat)printf(" ");
printf("%lld",X[i]);
cnt++;
flat=true;
if(cnt==6)
{
flat=false;
cnt=0;
puts("");
}
}
//Debug();
}
return 0;
}