利用到了 g c d ( a , a + 1 ) = 1 gcd(a,\ a+1) =1 gcd(a, a+1)=1 ,这一个性质。
证明:
原式 = g c d ( a , a + 1 ) = gcd(a,a+1) =gcd(a,a+1)
= g c d ( a + 1 , a ) =gcd(a+1,a) =gcd(a+1,a)
= g c d ( a , 1 ) =gcd(a,1) =gcd(a,1)
= 1 =1 =1
// #pragma GCC optimize(3)
#include <set>
#include <map>
#include <cmath>
#include <stack>
#include <queue>
#include <deque>
#include <string>
#include <cstdio>
#include <bitset>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <unordered_set>
#include <unordered_map>
#define endl '\n'
#define fi first
#define se second
#define PI acos(-1)
#define LL long long
#define INF 0x3f3f3f3f
#define lowbit(x) (-x&x)
#define PII pair<int, int>
#define ULL unsigned long long
#define PIL pair<int, long long>
#define mem(a, b) memset(a, b, sizeof a)
#define rev(x) reverse(x.begin(), x.end())
#define IOS ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
using namespace std;
const int N = 25;
int n;
int a[N];
int g;
int gcd(int a, int b) {
return b ? gcd(b, a % b) : a;
}
void solve() {
int tt = 1;
cin >> tt;
while (tt -- ) {
cin >> n >> g;
for (int i = 1; i < n; i ++ ) {
cin >> a[i];
g = gcd(g, a[i]);
}
if (g == 1) cout << 0 << endl;
else if (gcd(g, n) == 1) cout << 1 << endl; // 对最后一个操作
else if (gcd(g, n - 1) == 1) cout << 2 << endl; // 对倒数第二个操作
//对最后两个操作,用到上面的性质
else if (gcd(gcd(g, n), n - 1) == 1) cout << 3 << endl;
}
}
int main() {
IOS;
solve();
return 0;
}