当前位置: 首页 > 工具软件 > Cyclic > 使用案例 >

HDU-1853 Cyclic Tour

嵇财
2023-12-01

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1853

题目大意:

给你n个城市和m条路,现在汤姆想要旅游所有的城市,而且每个城市只能经过一次,当然,旅游路上有一点的花费,现在问汤姆怎么走才能使总花费最小。

解题思路:

二分图最优匹配的最小权问题。KM取负数实现。。经典思路。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<climits>
using namespace std;
#define N 505
#define MAXN 1<<28
int map[N][N];
int lx[N], ly[N];
int slack[N];
int match[N];
bool visitx[N], visity[N];
int n;

bool Hungary(int u)
{
	visitx[u] = true;
	for(int i = 1; i <= n; ++i)
	{
		if(visity[i])
			continue;
		else
		{
			if(lx[u] + ly[i] == map[u][i])
			{
				visity[i] = true;
				if(match[i] == -1 || Hungary(match[i]))
				{
					match[i] = u;
					return true;
				}
			}
			else
				slack[i] = min(slack[i], lx[u] + ly[i] - map[u][i]);
		}
	}
	return false;
}

void KM_perfect_match()
{
	int temp;
	for(int i = 1; i <= n; ++i)
		lx[i] = -MAXN;
	memset(ly, 0, sizeof(ly));
	for(int i = 1; i <= n; ++i)
		for(int j = 1; j <= n; ++j)
			lx[i] = max(lx[i], map[i][j]);
	for(int i = 1; i <= n; ++i)
	{
		for(int j = 1; j <= n; ++j)
			slack[j] = MAXN;
		while(1)
		{
			memset(visitx, false, sizeof(visitx));
			memset(visity, false, sizeof(visity));
			if(Hungary(i))
				break;
			else
			{
				temp = MAXN;
				for(int j = 1; j <= n; ++j)
					if(!visity[j])
						temp = min(temp, slack[j]);
				for(int j = 1; j <= n; ++j)
				{
					if(visitx[j])
						lx[j] -= temp;
					if(visity[j])
						ly[j] += temp;
					else
						slack[j] -= temp;
				}
			}
		}
	}
}

int main()
{
	int m;
	int a, b, cost;
	int ans;
	bool flag;
	while(scanf("%d%d", &n, &m) != EOF)
	{
		ans = 0;
		flag = true;
		memset(match, -1, sizeof(match));
		for(int i = 1; i <= n; ++i)
			for(int j = 1; j <= n; ++j)
				map[i][j] = -MAXN;
		for(int i = 1; i <= m; ++i)
		{
			scanf("%d%d%d", &a, &b, &cost); //防止有重边。取较小值(负数实现)
			if(-cost > map[a][b])
				map[a][b] = -cost;
		}
		KM_perfect_match();
		for(int i = 1; i <= n; ++i) //是否有完美匹配
		{
			if(match[i] == -1 || map[ match[i] ][i] == -MAXN)
			{
				flag = false;
				break;
			}
			ans += map[match[i]][i];
		}
		if(flag)
			printf("%d\n", -ans);
		else
			printf("-1\n");
	}
	return 0;
}


 类似资料:

相关阅读

相关文章

相关问答