从2.2.1后normalize_data_format 就从keras.utils.conv_utils移动到了keras.backend.common,所以
keras-contrib 不能通过 keras 2.2.1+ .引入
so
import keras
print(keras.__version__)
可以查看自己的安装Keras版本号
所以确定后改为:
from keras.utils.conv_utils import normalize_data_format
```from keras.backend.common import normalize_data_format``
https://github.com/keras-team/keras/blob/master/keras/utils/conv_utils.py
"""Utilities used in convolutional layers.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import range
import numpy as np
from .. import backend as K
def normalize_tuple(value, n, name):
"""Transforms a single int or iterable of ints into an int tuple.
# Arguments
value: The value to validate and convert. Could be an int, or any iterable
of ints.
n: The size of the tuple to be returned.
name: The name of the argument being validated, e.g. `strides` or
`kernel_size`. This is only used to format error messages.
# Returns
A tuple of n integers.
# Raises
ValueError: If something else than an int/long or iterable thereof was
passed.
"""
if isinstance(value, int):
return (value,) * n
else:
try:
value_tuple = tuple(value)
except TypeError:
raise ValueError('The `' + name + '` argument must be a tuple of ' +
str(n) + ' integers. Received: ' + str(value))
if len(value_tuple) != n:
raise ValueError('The `' + name + '` argument must be a tuple of ' +
str(n) + ' integers. Received: ' + str(value))
for single_value in value_tuple:
try:
int(single_value)
except ValueError:
raise ValueError('The `' + name + '` argument must be a tuple of ' +
str(n) + ' integers. Received: ' + str(value) + ' '
'including element ' + str(single_value) + ' of '
'type ' + str(type(single_value)))
return value_tuple
def normalize_padding(value):
padding = value.lower()
allowed = {'valid', 'same', 'causal'}
if K.backend() == 'theano':
allowed.add('full')
if padding not in allowed:
raise ValueError('The `padding` argument must be one of "valid", "same" '
'(or "causal" for Conv1D). Received: ' + str(padding))
return padding
def convert_kernel(kernel):
"""Converts a Numpy kernel matrix from Theano format to TensorFlow format.
Also works reciprocally, since the transformation is its own inverse.
# Arguments
kernel: Numpy array (3D, 4D or 5D).
# Returns
The converted kernel.
# Raises
ValueError: in case of invalid kernel shape or invalid data_format.
"""
kernel = np.asarray(kernel)
if not 3 <= kernel.ndim <= 5:
raise ValueError('Invalid kernel shape:', kernel.shape)
slices = [slice(None, None, -1) for _ in range(kernel.ndim)]
no_flip = (slice(None, None), slice(None, None))
slices[-2:] = no_flip
return np.copy(kernel[tuple(slices)])
def conv_output_length(input_length, filter_size,
padding, stride, dilation=1):
"""Determines output length of a convolution given input length.
# Arguments
input_length: integer.
filter_size: integer.
padding: one of `"same"`, `"valid"`, `"full"`.
stride: integer.
dilation: dilation rate, integer.
# Returns
The output length (integer).
"""
if input_length is None:
return None
assert padding in {'same', 'valid', 'full', 'causal'}
dilated_filter_size = filter_size + (filter_size - 1) * (dilation - 1)
if padding == 'same':
output_length = input_length
elif padding == 'valid':
output_length = input_length - dilated_filter_size + 1
elif padding == 'causal':
output_length = input_length
elif padding == 'full':
output_length = input_length + dilated_filter_size - 1
return (output_length + stride - 1) // stride
def conv_input_length(output_length, filter_size, padding, stride):
"""Determines input length of a convolution given output length.
# Arguments
output_length: integer.
filter_size: integer.
padding: one of `"same"`, `"valid"`, `"full"`.
stride: integer.
# Returns
The input length (integer).
"""
if output_length is None:
return None
assert padding in {'same', 'valid', 'full'}
if padding == 'same':
pad = filter_size // 2
elif padding == 'valid':
pad = 0
elif padding == 'full':
pad = filter_size - 1
return (output_length - 1) * stride - 2 * pad + filter_size
def deconv_length(dim_size, stride_size, kernel_size, padding,
output_padding, dilation=1):
"""Determines output length of a transposed convolution given input length.
# Arguments
dim_size: Integer, the input length.
stride_size: Integer, the stride along the dimension of `dim_size`.
kernel_size: Integer, the kernel size along the dimension of
`dim_size`.
padding: One of `"same"`, `"valid"`, `"full"`.
output_padding: Integer, amount of padding along the output dimension,
Can be set to `None` in which case the output length is inferred.
dilation: dilation rate, integer.
# Returns
The output length (integer).
"""
assert padding in {'same', 'valid', 'full'}
if dim_size is None:
return None
# Get the dilated kernel size
kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
# Infer length if output padding is None, else compute the exact length
if output_padding is None:
if padding == 'valid':
dim_size = dim_size * stride_size + max(kernel_size - stride_size, 0)
elif padding == 'full':
dim_size = dim_size * stride_size - (stride_size + kernel_size - 2)
elif padding == 'same':
dim_size = dim_size * stride_size
else:
if padding == 'same':
pad = kernel_size // 2
elif padding == 'valid':
pad = 0
elif padding == 'full':
pad = kernel_size - 1
dim_size = ((dim_size - 1) * stride_size + kernel_size - 2 * pad +
output_padding)
return dim_size
参考:https://blog.csdn.net/weixin_42536346/article/details/88342261