当前位置: 首页 > 工具软件 > hope-boot > 使用案例 >

u-boot-2016.05启动流程

倪风史
2023-12-01

0、由u-boot-2016.05\arch\arm\cpu\u-boot.lds链接文件中ENTRY(_start) 可知程序的入口在_start,在SourceInsight中查找可发现程序的入口_start在u-boot-2016.05\arch\arm\lib\vectors.S中。

...

ENTRY(_start)
SECTIONS
{
    ...

    . = 0x00000000;

    . = ALIGN(4);
    .text :
    {
        *(.__image_copy_start)
        *(.vectors)
        CPUDIR/start.o (.text*)
        *(.text*)
    }

    ...

    . = ALIGN(4);
    .rodata : { *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.rodata*))) }

    . = ALIGN(4);
    .data : {
        *(.data*)
    }

    . = ALIGN(4);

    . = .;

    ...

    .bss_start __rel_dyn_start (OVERLAY) : {
        KEEP(*(.__bss_start));
        __bss_base = .;
    }

    .bss __bss_base (OVERLAY) : {
        *(.bss*)
         . = ALIGN(4);
         __bss_limit = .;
    }

    .bss_end __bss_limit (OVERLAY) : {
        KEEP(*(.__bss_end));
    }

    ...
}

进入boot-2016.05\arch\arm\lib\vectors.S中,可以看到从_start开始后就跳转到reset去执行:

...

.globl _start

...

_start:

#ifdef CONFIG_SYS_DV_NOR_BOOT_CFG
    .word   CONFIG_SYS_DV_NOR_BOOT_CFG
#endif

    b   reset
    ldr pc, _undefined_instruction
    ldr pc, _software_interrupt
    ldr pc, _prefetch_abort
    ldr pc, _data_abort
    ldr pc, _not_used
    ldr pc, _irq
    ldr pc, _fiq

...

1、从u-boot-2016.05\arch\arm\cpu\arm920t\start.S中reset执行 
主要执行流程:reset -> cpu_init_crit -> lowlevel_init -> _main

  • reset:
    
    ...
    
    #ifndef CONFIG_SKIP_LOWLEVEL_INIT
        bl  cpu_init_crit
    #endif
    
        bl  _main
    
    ...
    
    #ifndef CONFIG_SKIP_LOWLEVEL_INIT
    cpu_init_crit:
    
    ...
    
        bl  lowlevel_init
    
    ...
    
    #endif /* CONFIG_SKIP_LOWLEVEL_INIT */

2、由bl _main跳转到u-boot-2016.05\arch\arm\lib\crt0.S中从入口_main开始执行 
主要执行流程:board_init_f -> relocate_code -> board_init_r

  • ENTRY(_main)
    
            ...
    
        bl  board_init_f_alloc_reserve
            ...
        bl  board_init_f_init_reserve
            ...
        bl  board_init_f
    
    #if ! defined(CONFIG_SPL_BUILD)
    
            ...
    
        b   relocate_code
    
            ...
    
    #endif
    #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_FRAMEWORK)
    
             ...
    
    #if defined(CONFIG_SYS_THUMB_BUILD)
    
            ...
    
    #else
        ldr pc, =board_init_r   
    #endif
    #endif
    
    ENDPROC(_main)

这部分有三点说明: 

⑴、u-boot-2016.05\common\board_f.c:board_init_f通过initcall_run_list(init_sequence_f)函数执行一系列初始化函数以实现前半部分板级初始化。全局结构体gd在u-boot-2016.05\arch\arm\include\asm\global_data.h中声明:

#define DECLARE_GLOBAL_DATA_PTR     register volatile gd_t *gd asm ("r9")

⑵、u-boot-2016.05\arch\arm\lib\relocate.S:relocate_code实现uboot代码的重定位,此部分如果觉得源代码不是简单明了可自己改写。 
⑶、去重定位uboot有两种路径: 

一种是将gd->flags设为0,在初始化函数序列init_sequence_f中的jump_to_copy函数中去跳转到relocate_code:

static int jump_to_copy(void)
{
    if (gd->flags & GD_FLG_SKIP_RELOC)
        return 0;
    ...

#if defined(CONFIG_X86) || defined(CONFIG_ARC)
    ...
#else
    relocate_code(gd->start_addr_sp, gd->new_gd, gd->relocaddr);
#endif

    return 0;
}

另一种就是不宏定义CONFIG_SPL_BUILD,然后在u-boot-2016.05\arch\arm\lib\crt0.S中通过

#if ! defined(CONFIG_SPL_BUILD)

        ...

    b   relocate_code

        ...

#endif

来跳转到relocate_code。以上两种方法选其一,另一种就得去掉。 

3、在上一步通过ldr pc, =board_init_r指令进入u-boot-2016.05\common\board_r.c:board_init_r函数,进而调用initcall_run_list(init_sequence_r)函数执行一系列初始化函数以实现后半部分板级初始化,并在initcall_run_list函数里进入run_main_loop不再返回。

void board_init_r(gd_t *new_gd, ulong dest_addr)
{
    ...

    if (initcall_run_list(init_sequence_r))
        hang();

    /* NOTREACHED - run_main_loop() does not return */
    hang();
}

init_sequence_r是一个函数指针数组,里面存放了很多初始化函数指针,里面有两个重要的函数指针initr_announce和run_main_loop:

init_fnc_t init_sequence_r[] = {

    ...

    initr_announce,

    ...

    run_main_loop,
};

initr_announce函数声明从此处开始程序就将跳转到RAM中运行:

static int initr_announce(void)
{
    debug("Now running in RAM - U-Boot at: %08lx\n", gd->relocaddr);
    return 0;
}

最后一项是run_main_loop ,进入run_main_loop 后便不再返回。

4、在run_main_loop 里会进入u-boot-2016.05\common\main.c:main_loop函数

static int run_main_loop(void)
{
    ...

    for (;;)
        main_loop();
    return 0;
}

进入main_loop之前就已经完成初始化,接下来准备去处理命令

/* We come here after U-Boot is initialised and ready to process commands */
void main_loop(void)
{
    const char *s;

    bootstage_mark_name(BOOTSTAGE_ID_MAIN_LOOP, "main_loop");

    ...

    /* get environment_variable: s = getenv("bootcmd"); -> bootcmd */
    s = bootdelay_process();

    ...

    autoboot_command(s);

    ...
}

main_loop函数里有两个重要的过程: 

⑴、首先在bootdelay_process函数里通过s = getenv(“bootcmd”)得到bootcmd参数并返回bootcmd参数,

const char *bootdelay_process(void)
{
    char *s;
    int bootdelay;

    ...

    s = getenv("bootdelay");

    ...

    debug("### main_loop entered: bootdelay=%d\n\n", bootdelay);

    ...

        s = getenv("bootcmd");

    ...

    stored_bootdelay = bootdelay;

    return s;
}

其中,bootcmd参数通过以下方式指定: 

先在u-boot-2016.05\include\env_default.h中

#ifdef  CONFIG_BOOTCOMMAND
    "bootcmd="  CONFIG_BOOTCOMMAND      "\0"
#endif

再在u-boot-2016.05\include\configs\smdk2440.h中指定

#define CONFIG_BOOTCOMMAND "nand read 30000000 kernel;bootm 30000000"

⑵、然后进入autoboot_command函数,并将bootcmd参数传入,继而进入run_command_list函数,继续将bootcmd参数传入

void autoboot_command(const char *s)
{
    ...

    if (stored_bootdelay != -1 && s && !abortboot(stored_bootdelay)) {
        ...
        run_command_list(s, -1, 0);
        ...
    }
    ...
}

5、从autoboot_command函数进入u-boot-2016.05\common\cli.c:run_command_list函数后,接着会调用board_run_command函数去执行命令

int run_command_list(const char *cmd, int len, int flag)
{
    int need_buff = 1;
    char *buff = (char *)cmd;   /* cast away const */
    int rcode = 0;

    if (len == -1) {
        len = strlen(cmd);
#ifdef CONFIG_SYS_HUSH_PARSER
        ...
#else
        /* the built-in parser will change our string if it sees \n */
        need_buff = strchr(cmd, '\n') != NULL;
#endif
    }
    if (need_buff) {
        buff = malloc(len + 1);
        if (!buff)
            return 1;
        memcpy(buff, cmd, len);
        buff[len] = '\0';
    }
#ifdef CONFIG_SYS_HUSH_PARSER
    ...
#ifdef CONFIG_CMDLINE
    ...
#else
    rcode = board_run_command(buff);
#endif
#endif
    ...
}

那么,board_run_command如何去执行命令? 

首先,board_run_command函数通过bootcmd参数中的bootm命令找到u-boot-2016.05\cmd\bootm.c中的

U_BOOT_CMD(
    bootm,  CONFIG_SYS_MAXARGS, 1,  do_bootm,
    "boot application image from memory", bootm_help_text
);

然后,根据这个信息找到执行bootm命令的处理函数指针do_bootm,并进入do_bootm函数执行相关代码,而U_BOOT_CMD在u-boot-2016.05\include\command.h中定义:

#define U_BOOT_CMD(_name, _maxargs, _rep, _cmd, _usage, _help)      \
    U_BOOT_CMD_COMPLETE(_name, _maxargs, _rep, _cmd, _usage, _help, NULL)

在此,board_run_command函数还会将bootm命令中的参数(内核映像所在地址)30000000赋给bootm_headers_t结构体变量images,则images首地址就是30000000,images在u-boot-2016.05\cmd\bootm.c中定义:

bootm_headers_t images; 

6、根据U_BOOT_CMD信息进入u-boot-2016.05\cmd\bootm.c:do_bootm函数

int do_bootm(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
    ...

    return do_bootm_states(cmdtp, flag, argc, argv, BOOTM_STATE_START |
        BOOTM_STATE_FINDOS | BOOTM_STATE_FINDOTHER |
        BOOTM_STATE_LOADOS |
#if defined(CONFIG_PPC) || defined(CONFIG_MIPS)
        BOOTM_STATE_OS_CMDLINE |
#endif
        BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO |
        BOOTM_STATE_OS_GO, &images, 1);
}

7、从do_bootm进入u-boot-2016.05\common\bootm.c:do_bootm_states函数,Now run the OS!

int do_bootm_states(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[],
            int states, bootm_headers_t *images, int boot_progress)
{
    boot_os_fn *boot_fn;
    ulong iflag = 0;
    int ret = 0, need_boot_fn;

    images->state |= states;

    /*
     * Work through the states and see how far we get. We stop on
     * any error.
     */
    if (states & BOOTM_STATE_START)
        ret = bootm_start(cmdtp, flag, argc, argv);

    if (!ret && (states & BOOTM_STATE_FINDOS))
        ret = bootm_find_os(cmdtp, flag, argc, argv);

    if (!ret && (states & BOOTM_STATE_FINDOTHER)) {
        ret = bootm_find_other(cmdtp, flag, argc, argv);
        argc = 0;   /* consume the args */
    }

    /* Load the OS */
    if (!ret && (states & BOOTM_STATE_LOADOS)) {
        ulong load_end;

        iflag = bootm_disable_interrupts();
        ret = bootm_load_os(images, &load_end, 0);
        if (ret == 0)
            lmb_reserve(&images->lmb, images->os.load,
                    (load_end - images->os.load));
        else if (ret && ret != BOOTM_ERR_OVERLAP)
            goto err;
        else if (ret == BOOTM_ERR_OVERLAP)
            ret = 0;
#if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY)
        if (images->os.os == IH_OS_LINUX)
            fixup_silent_linux();
#endif
    }

    /* Relocate the ramdisk */
#ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
    if (!ret && (states & BOOTM_STATE_RAMDISK)) {
        ulong rd_len = images->rd_end - images->rd_start;

        ret = boot_ramdisk_high(&images->lmb, images->rd_start,
            rd_len, &images->initrd_start, &images->initrd_end);
        if (!ret) {
            setenv_hex("initrd_start", images->initrd_start);
            setenv_hex("initrd_end", images->initrd_end);
        }
    }
#endif
#if IMAGE_ENABLE_OF_LIBFDT && defined(CONFIG_LMB)
    if (!ret && (states & BOOTM_STATE_FDT)) {
        boot_fdt_add_mem_rsv_regions(&images->lmb, images->ft_addr);
        ret = boot_relocate_fdt(&images->lmb, &images->ft_addr,
                    &images->ft_len);
    }
#endif

    /* From now on, we need the OS boot function */
    if (ret)
        return ret;
    boot_fn = bootm_os_get_boot_func(images->os.os);
    need_boot_fn = states & (BOOTM_STATE_OS_CMDLINE |
            BOOTM_STATE_OS_BD_T | BOOTM_STATE_OS_PREP |
            BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO);
    if (boot_fn == NULL && need_boot_fn) {
        if (iflag)
            enable_interrupts();
        printf("ERROR: booting os '%s' (%d) is not supported\n",
               genimg_get_os_name(images->os.os), images->os.os);
        bootstage_error(BOOTSTAGE_ID_CHECK_BOOT_OS);
        return 1;
    }

    /* Call various other states that are not generally used */
    if (!ret && (states & BOOTM_STATE_OS_CMDLINE))
        ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, images);
    if (!ret && (states & BOOTM_STATE_OS_BD_T))
        ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, images);
    if (!ret && (states & BOOTM_STATE_OS_PREP))
        ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, images);

#ifdef CONFIG_TRACE
    /* Pretend to run the OS, then run a user command */
    if (!ret && (states & BOOTM_STATE_OS_FAKE_GO)) {
        char *cmd_list = getenv("fakegocmd");

        ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_FAKE_GO,
                images, boot_fn);
        if (!ret && cmd_list)
            ret = run_command_list(cmd_list, -1, flag);
    }
#endif

    /* Check for unsupported subcommand. */
    if (ret) {
        puts("subcommand not supported\n");
        return ret;
    }

    /* Now run the OS! We hope this doesn't return */
    if (!ret && (states & BOOTM_STATE_OS_GO))
        ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_GO,
                images, boot_fn);

    /* Deal with any fallout */
err:
    if (iflag)
        enable_interrupts();

    if (ret == BOOTM_ERR_UNIMPLEMENTED)
        bootstage_error(BOOTSTAGE_ID_DECOMP_UNIMPL);
    else if (ret == BOOTM_ERR_RESET)
        do_reset(cmdtp, flag, argc, argv);

    return ret;
}

do_bootm_states函数总共分8个部分: 
⑴、 Work through the states and see how far we get. We stop on any error. 
其中主要函数bootm_find_os实现三个功能:get kernel image header, start address and length,get image parameters。大概过程是:bootm_find_os -> boot_get_kernel -> image_get_kernel 。

static int bootm_find_os(cmd_tbl_t *cmdtp, int flag, int argc,
             char * const argv[])
{
    const void *os_hdr;
    bool ep_found = false;
    int ret;

    /* get kernel image header, start address and length */
    os_hdr = boot_get_kernel(cmdtp, flag, argc, argv,
            &images, &images.os.image_start, &images.os.image_len);
    ...

    /* get image parameters */
    switch (genimg_get_format(os_hdr)) {
#if defined(CONFIG_IMAGE_FORMAT_LEGACY)
    case IMAGE_FORMAT_LEGACY: /*旧系统格式的内核映像*/
        images.os.type = image_get_type(os_hdr);
        images.os.comp = image_get_comp(os_hdr);
        images.os.os = image_get_os(os_hdr);

        images.os.end = image_get_image_end(os_hdr);
        images.os.load = image_get_load(os_hdr);
        images.os.arch = image_get_arch(os_hdr);
        break;
#endif
#if IMAGE_ENABLE_FIT
    case IMAGE_FORMAT_FIT:
        ...
#endif
#ifdef CONFIG_ANDROID_BOOT_IMAGE
    case IMAGE_FORMAT_ANDROID:
        ...
#endif
    default:
        puts("ERROR: unknown image format type!\n");
        return 1;
    }

    ...

    if (images.os.type == IH_TYPE_KERNEL_NOLOAD) {
        images.os.load = images.os.image_start;
        images.ep += images.os.load;
    }
    ...

关于boot_get_kernel 、image_get_kernel 的说明: 
boot_get_kernel - find kernel image(returns: 
pointer to image header if valid image was found, plus kernel start address and length, otherwise NULL)

image_get_kernel - verify legacy format kernel image(returns: 
pointer to a legacy image header if valid image was found otherwise return NULL) 
⑵、Load the OS 
⑶、Relocate the ramdisk 
⑷、From now on, we need the OS boot function 
boot_fn = bootm_os_get_boot_func(images->os.os);得到boot处理函数指针并赋给boot_fn。 

①、关于参数images->os.os,可以由下列定义得知它是系统内核的类型,并在(2)中被赋值,若系统类型为linux,则images->os.os=5。

typedef struct bootm_headers {

    ...

#ifndef USE_HOSTCC  /*USE_HOSTCC 没有宏定义*/
    image_info_t    os;     /* os image info */
    ulong       ep;     /* entry point of OS */

    ulong       rd_start, rd_end;/* ramdisk start/end */

    char        *ft_addr;   /* flat dev tree address */
    ulong       ft_len;     /* length of flat device tree */

    ulong       initrd_start;
    ulong       initrd_end;
    ulong       cmdline_start;
    ulong       cmdline_end;
    bd_t        *kbd;
#endif

    ...

} bootm_headers_t;

bootm_headers_t images;
typedef struct image_info {
    ulong       start, end;     /* start/end of blob */
    ulong       image_start, image_len; /* start of image within blob, len of image */
    ulong       load;           /* load addr for the image */
    uint8_t     comp, type, os;     /* compression, type of image, os type */
    uint8_t     arch;           /* CPU architecture */
} image_info_t;

得到images.os.os的值:

static int bootm_find_os(cmd_tbl_t *cmdtp, int flag, int argc,
             char * const argv[])
{
    const void *os_hdr;

    ...

    /* get kernel image header, start address and length */
    os_hdr = boot_get_kernel(cmdtp, flag, argc, argv,
            &images, &images.os.image_start, &images.os.image_len);

    ...

    /* get image parameters */
    switch (genimg_get_format(os_hdr)) {
#if defined(CONFIG_IMAGE_FORMAT_LEGACY)
    case IMAGE_FORMAT_LEGACY:                       /*旧系统格式的内核映像*/
        ...
        images.os.os = image_get_os(os_hdr);
        ...
        break;
#endif

②、bootm_os_get_boot_func中会用到函数指针数组boot_os,该数组利用传入的images.os.os=5的值得到boot处理函数指针do_bootm_linux返回给boot_fn 。

boot_fn = bootm_os_get_boot_func(images->os.os);
boot_os_fn *bootm_os_get_boot_func(int os)
{
    ...
    return boot_os[os];
}
static boot_os_fn *boot_os[] = {
    [IH_OS_U_BOOT] = do_bootm_standalone,
#ifdef CONFIG_BOOTM_LINUX
    [IH_OS_LINUX] = do_bootm_linux,
#endif
#ifdef CONFIG_BOOTM_NETBSD
    [IH_OS_NETBSD] = do_bootm_netbsd,
#endif
    ...
};

操作系统代号可在u-boot-2016.05\include\image.h中查看

/*
 * Operating System Codes
 */
#define IH_OS_INVALID       0   /* Invalid OS   */
#define IH_OS_OPENBSD       1   /* OpenBSD  */
#define IH_OS_NETBSD        2   /* NetBSD   */
#define IH_OS_FREEBSD       3   /* FreeBSD  */
#define IH_OS_4_4BSD        4   /* 4.4BSD   */
#define IH_OS_LINUX     5   /* Linux    */

        ...

⑸、Call various other states that are not generally used 
⑹、Check for unsupported subcommand 
⑺、Now run the OS! We hope this doesn’t return

if (!ret && (states & BOOTM_STATE_OS_GO))
        ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_GO,
                images, boot_fn);

从do_bootm_states进入u-boot-2016.05\common\bootm_os.c:boot_selected_os函数,执行boot_fn(state, argc, argv, images);

int boot_selected_os(int argc, char * const argv[], int state,
             bootm_headers_t *images, boot_os_fn *boot_fn)
{
    ...
    boot_fn(state, argc, argv, images);
    ...
}

⑻、Deal with any fallout 
8、执行boot_fn(state, argc, argv, images),因为boot_fn=do_bootm_linux,所以相当于执行do_bootm_linux(state, argc, argv, images),程序跳到u-boot-2016.05\arch\arm\lib\bootm.c:

/* Main Entry point for arm bootm implementation*/
int do_bootm_linux(int flag, int argc, char * const argv[],
           bootm_headers_t *images)
{
    ...
    boot_jump_linux(images, flag);
    ...
}

do_bootm_linux -> boot_jump_linux -> kernel_entry(0, machid, r2);

static void boot_jump_linux(bootm_headers_t *images, int flag)
{
    ...

    unsigned long machid = gd->bd->bi_arch_number;
    char *s;
    void (*kernel_entry)(int zero, int arch, uint params);
    unsigned long r2;
    int fake = (flag & BOOTM_STATE_OS_FAKE_GO);

    kernel_entry = (void (*)(int, int, uint))images->ep; /* ep:entry point of OS*/

    s = getenv("machid");
    if (s) {
        if (strict_strtoul(s, 16, &machid) < 0) {
            debug("strict_strtoul failed!\n");
            return;
        }
        printf("Using machid 0x%lx from environment\n", machid);
    }

    ...

    if (IMAGE_ENABLE_OF_LIBFDT && images->ft_len)
        r2 = (unsigned long)images->ft_addr;
    else
        r2 = gd->bd->bi_boot_params;

    if (!fake) {
        ...
            kernel_entry(0, machid, r2);
    }
#endif
}

run the OS! 
说明: 
关于kernel_entry = (void (*)(int, int, uint))images->ep;中的images->ep在u-boot-2016.05\common\bootm.c:bootm_find_os函数中被赋值。

static int bootm_find_os(cmd_tbl_t *cmdtp, int flag, int argc,
             char * const argv[])
{
    ...

    if (images.os.type == IH_TYPE_KERNEL_NOLOAD) {
        images.os.load = images.os.image_start;
        images.ep += images.os.load;
    }

    ...
}
 类似资料: