input: dynamic input is missing dimensions in profile
onnx2trt代码报错:
import numpy as np
import tensorrt as trt
import os
import pycuda.driver as cuda
import argparse
def GiB(val):
return val * 1 << 30
def ONNX_build_engine(onnx_file_path, write_engine=True):
# :return: engine
G_LOGGER = trt.Logger(trt.Logger.WARNING)
# 1、动态输入第一点必须要写的
explicit_batch = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
batch_size = 8 # trt推理时最大支持的batchsize
with trt.Builder(G_LOGGER) as builder, builder.create_network(explicit_batch) as network, trt.OnnxParser(network,
G_LOGGER) as parser:
builder.max_batch_size = batch_size
config = builder.create_builder_config()
config.max_workspace_size = GiB(2)
config.set_flag(trt.BuilderFlag.FP16)
print('Loading ONNX file from path {}...'.format(onnx_file_path))
with open(onnx_file_path, 'rb') as model:
print('Beginning ONNX file parsing')
parser.parse(model.read())
print('Completed parsing of ONNX file')
print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))
# 重点
profile = builder.create_optimization_profile() # 动态输入时候需要 分别为最小输入、常规输入、最大输入
# 有几个输入就要写几个profile.set_shape 名字和转onnx的时候要对应
# tensorrt6以后的版本是支持动态输入的,需要给每个动态输入绑定一个profile,用于指定最小值,常规值和最大值,如果超出这个范围会报异常。
profile.set_shape("input", (1, 3, 128, 128), (4, 3, 128, 128), (16, 3, 128, 128))
config.add_optimization_profile(profile)
engine = builder.build_engine(network, config)
print("Completed creating Engine")
# 保存engine文件
if write_engine:
engine_file_path = 'efficientnet_b1.trt'
with open(engine_file_path, "wb") as f:
f.write(engine.serialize())
return engine
onnx_file_path = r'skipnet_0712.onnx'
onnx_file_path = r'model2.onnx'
onnx_file_path = r'skip_simp2.onnx'
# onnx_file_path = r'mobileone_0713.onnx'
write_engine = True
engine = ONNX_build_engine(onnx_file_path, write_engine)
原错误代码:
profile.set_shape("inputs", (1, 3, 240, 240), (8, 3, 240, 240), (16, 3, 480, 480))
改之后代码:
profile.set_shape("input", (1, 3, 128, 128), (8, 3, 128, 128), (16, 3, 128, 128))
input就是onnx的输入参数,和output是输出参数