题目:
We are given an array asteroids
of integers representing asteroids in a row.
For each asteroid, the absolute value represents its size, and the sign represents its direction (positive meaning right, negative meaning left). Each asteroid moves at the same speed.
Find out the state of the asteroids after all collisions. If two asteroids meet, the smaller one will explode. If both are the same size, both will explode. Two asteroids moving in the same direction will never meet.
Example 1:
Input: asteroids = [5, 10, -5] Output: [5, 10] Explanation: The 10 and -5 collide resulting in 10. The 5 and 10 never collide.
Example 2:
Input: asteroids = [8, -8] Output: [] Explanation: The 8 and -8 collide exploding each other.
Example 3:
Input: asteroids = [10, 2, -5] Output: [10] Explanation: The 2 and -5 collide resulting in -5. The 10 and -5 collide resulting in 10.
Example 4:
Input: asteroids = [-2, -1, 1, 2] Output: [-2, -1, 1, 2] Explanation: The -2 and -1 are moving left, while the 1 and 2 are moving right. Asteroids moving the same direction never meet, so no asteroids will meet each other.
Note:
asteroids
will be at most 10000
.[-1000, 1000].
. 思路:
由于小于0的小行星往左移动,大于0的小行星往右移动,所以只有在左边的小行星往右移动,而右边的小行星往左移动的情况下,两者才可能发生相撞而爆炸。因此,我们定义一个堆栈,当且仅当栈顶元素大于0,并且当前元素小于0的时候,两者就会相撞,所以我们计算相撞后哪个小行星爆炸了:如果是栈顶的爆炸了,那么需要出栈,并且循环检查当前小行星还会不会和新的栈顶元素相撞;如果是当前小行星爆炸了,则不用做什么;如果是两个小行星同时爆炸了,则需要出栈,并且跳出循环检测。
在算法实现中,我们用vector<int>来模拟堆栈,这样便于直接返回。算法的空间复杂度是O(n),时间复杂度也是O(n)。
代码:
class Solution {
public:
vector<int> asteroidCollision(vector<int>& asteroids) {
if (asteroids.size() == 0) {
return {};
}
vector<int> st;
for (int i = 0; i < asteroids.size(); ++i) {
int value = asteroids[i];
while (!st.empty() && st.back() > 0 && value < 0) {
int sign = st.back() + value;
if (sign > 0) { // the left moving asteroid explodes
value = st.back();
}
else if (sign == 0) { // both asteroids explode
value = 0;
}
st.pop_back();
}
if (value != 0) {
st.push_back(value);
}
}
return st;
}
};