Given n
books and the i-th
book has pages[i]
pages. There are k
persons to copy these books.
These books list in a row and each person can claim a continous range of books. For example, one copier can copy the books from i-th
to j-th
continously, but he can not copy the 1st book, 2nd book and 4th book (without 3rd book).
They start copying books at the same time and they all cost 1 minute to copy 1 page of a book. What's the best strategy to assign books so that the slowest copier can finish at earliest time?
Return the shortest time that the slowest copier spends.
Example 1:
Input: pages = [3, 2, 4], k = 2
Output: 5
Explanation:
First person spends 5 minutes to copy book 1 and book 2.
Second person spends 4 minutes to copy book 3.
Example 2:
Input: pages = [3, 2, 4], k = 3
Output: 4
Explanation: Each person copies one of the books.
O(nk) time
The sum of book pages is less than or equal to 2147483647
思路:二分答案,直接求不好求,那么我们就问,如果给你无穷多的人,你需要多久? Max(Length of page[i]), 如果给你1个人,你需要多久,sum (Pages[i]) ,那么问题来了,你需要求给你k个人情况下的,你需要多久。很显然,这又是个递增递减的关系;
人越多,需要的时间越少,人越少需要的时间越多;
create一个canCopy函数,看在K个人的情况下,limit time能否copy完,那么搜索能够用k个人copy完的最小的时间。
public class Solution {
/**
* @param pages: an array of integers
* @param k: An integer
* @return: an integer
*/
public int copyBooks(int[] pages, int k) {
if(pages == null || pages.length == 0) {
return 0;
}
int start = 0; // max(p)
int end = 0; // sum(p)
for(int p: pages) {
start = Math.max(start, p);
end += p;
}
while(start + 1 < end) {
int mid = start + (end - start) / 2;
if(needPerson(mid, pages) > k) {
start = mid;
} else {
// needPerson(mid, pages) <= k
end = mid;
}
}
if(needPerson(start, pages) > k) { // 这个判断条件,跟上面的判断start, end一模一样;
return end;
}
return start;
}
private int needPerson(int timelimit, int[] pages) {
int count = 0;
int sum = 0;
int i = 0;
while(i < pages.length) {
// 为了计算在时间limit下,一个人能够抄多少,最后计算出需要多少人在限定时间下能够抄完;
while(i < pages.length && sum + pages[i] <= timelimit) {
sum += pages[i];
i++;
}
count++;
sum = 0;
}
return count;
}
}