在上一讲里我们学习了HTTP协议使用TCP/IP协议栈,知道了HTTP协议是运行在TCP/IP上的
IP协议的职责是 “网际互连”。它在MAC层之上,使用IP地址把MAC转换成了四位数字,这就对物理网卡的MAC地址做了一层手抽象,发展出了许多的新玩法
例如,分为 A、B、C、D、E 五种类型,公有地址和私有地址,掩码分割子网等。只要每个小网络在 IP 地址这个概念上达成一致,不管它在 MAC 层有多大的差异,都可以接入 TCP/IP 协议栈,最终汇合进整个互联网。
但接入互联网的计算机越来越多,IP 地址的缺点也就暴露出来了,最主要的是它“对人不友好”,虽然比 MAC 的 16 进制数要好一点,但还是难于记忆和输入。
怎么解决这个问题呢?
那就“以其人之道还治其人之身”,在 IP 地址之上再来一次抽象,把数字形式的 IP 地址转换成更有意义更好记的名字,在字符串的层面上再增加“新玩法”。于是,DNS 域名系统就这么出现了。
在第 4 讲曾经说过,域名是一个有层次的结构,是一串用“.”分隔的多个单词,最右边的被称为“顶级域名”,然后是“二级域名”,层级关系向左依次降低。
最左边的是主机名,通常用来表明主机的用途,比如“www”表示提供万维网服务、“mail”表示提供邮件服务,不过这也不是绝对的,名字的关键是要让我们容易记忆。
看一下极客时间的域名“time.geekbang.org”,这里的“org”就是顶级域名,“geekbang”是二级域名,“time”则是主机名。使用这个域名,DNS 就会把它转换成相应的 IP 地址,你就可以访问极客时间的网站了。
域名不仅能够代替 IP 地址,还有许多其他的用途。
在 Apache、Nginx 这样的 Web 服务器里,域名可以用来标识虚拟主机,决定由哪个虚拟主机来对外提供服务,比如在 Nginx 里就会使用“server_name”指令:
server {
listen 80; # 监听 80 端口
server_name time.geekbang.org; # 主机名是 time.geekbang.org
...
}
域名本质上还是个名字空间系统,使用多级域名就可以划分出不同的国家、地区、组织、公司、部门,每个域名都是独一无二的,可以作为一种身份的标识。
举个例子吧,假设 A 公司里有个小明,B 公司里有个小强,于是他们就可以分别说是“小明.A 公司”,“小强.B 公司”,即使 B 公司里也有个小明也不怕,可以标记为“小明.B 公司”,很好地解决了重名问题。
因为这个特性,域名也被扩展到了其他应用领域,比如 Java 的包机制就采用域名作为命名空间,只是它使用了反序。如果极客时间要开发 Java 应用,那么它的包名可能就是“org.geekbang.time”。
而 XML 里使用 URI 作为名字空间,也是间接使用了域名。
就像IP地址必须转换成MAC地址才能访问主机一样,域名也不许转换成ip地址,这个过程就是 域名解析
目前全世界有几亿个站点,有几十亿网民,而每天网络发生的http流量更是天文数字,这些请求绝大多数都是基于域名来访问网站的,所以DNS就成了互联网的重要基础设施,必须要保证域名解析稳定可靠,快速高效
DNS的核心系统是一个三层结构,分布式服务,基本对应域名的结构
在这里根域名服务器是关键,它必须是众所周知的,否则下面的各级服务器就无从谈起了,目前世界共有13组根域名服务器,又有数百台的镜像,保证一定能访问到
有了这个系统之后,任何一个域名都可以在这个树形结构里从顶至下进行查询,就好像是把域名从右到左顺序走了一遍,最终就获得了域名对应的IPi地址
例如,你要访问,www.apple.com,就要进行下面三次查询
虽然核心的DNS系统遍布全球。服务能力也很强很稳定。但如果全世界的网民都往这个系统里挤,即使不瘫痪,访问速度也会很慢
所以在核心 DNS 系统之外,还有两种手段用来减轻域名解析的压力,并且能够更快地获取结果,基本思路就是“缓存”。
首先,许多大公司、网络运行商都会建立自己的 DNS 服务器,作为用户 DNS 查询的代理,代替用户访问核心 DNS 系统。这些“野生”服务器被称为“非权威域名服务器”,可以缓存之前的查询结果,如果已经有了记录,就无需再向根服务器发起查询,直接返回对应的 IP 地址。
这些 DNS 服务器的数量要比核心系统的服务器多很多,而且大多部署在离用户很近的地方。比较知名的 DNS 有 Google 的“8.8.8.8”,Microsoft 的“4.2.2.1”,还有 CloudFlare 的“1.1.1.1”等等。
其次,操作系统里也会对 DNS 解析结果做缓存,如果你之前访问过“www.apple.com”,那么下一次在浏览器里再输入这个网址的时候就不会再跑到 DNS 那里去问了,直接在操作系统里就可以拿到 IP 地址。
另外,操作系统里还有一个特殊的“主机映射”文件,通常是一个可编辑的文本,在 Linux 里是“/etc/hosts”,在 Windows 里是“C:\WINDOWS\system32\drivers\etc\hosts”,如果操作系统在缓存里找不到 DNS 记录,就会找这个文件。
有了上面的“野生”DNS 服务器、操作系统缓存和 hosts 文件后,很多域名解析的工作就都不用“跋山涉水”了,直接在本地或本机就能解决,不仅方便了用户,也减轻了各级 DNS 服务器的压力,效率就大大提升了。
下面的这张图比较完整地表示了现在的 DNS 架构。
在 Nginx 里有这么一条配置指令“resolver”,它就是用来配置 DNS 服务器的,如果没有它,那么 Nginx 就无法查询域名对应的 IP,也就无法反向代理到外部的网站。
resolver 8.8.8.8 valid=30s; # 指定 Google 的 DNS,缓存 30 秒
有了域名,又有了可以稳定工作的解析系统,于是我们就可以实现比 IP 地址更多的“新玩法”了。
第一种,也是最简单的,“重定向”。因为域名代替了 IP 地址,所以可以让对外服务的域名不变,而主机的 IP 地址任意变动。当主机有情况需要下线、迁移时,可以更改 DNS 记录,让域名指向其他的机器。
比如,你有一台“buy.tv”的服务器要临时停机维护,那你就可以通知 DNS 服务器:“我这个 buy.tv 域名的地址变了啊,原先是 1.2.3.4,现在是 5.6.7.8,麻烦你改一下。”DNS 于是就修改内部的 IP 地址映射关系,之后再有访问 buy.tv 的请求就不走 1.2.3.4 这台主机,改由 5.6.7.8 来处理,这样就可以保证业务服务不中断。
第二种,因为域名是一个名字空间,所以可以使用 bind9 等开源软件搭建一个在内部使用的 DNS,作为名字服务器。这样我们开发的各种内部服务就都用域名来标记,比如数据库服务都用域名“mysql.inner.app”,商品服务都用“goods.inner.app”,发起网络通信时也就不必再使用写死的 IP 地址了,可以直接用域名,而且这种方式也兼具了第一种“玩法”的优势。
第三种“玩法”包含了前两种,也就是基于域名实现的负载均衡。
前面我们说的都是可信的 DNS,如果有一些不怀好意的 DNS,那么它也可以在域名这方面“做手脚”,弄一些比较“恶意”的“玩法”,举两个例子:
好在互联网上还是好人多,而且 DNS 又是互联网的基础设施,这些“恶意 DNS”并不多见,你上网的时候不需要太过担心。