当前位置: 首页 > 工具软件 > zero-log > 使用案例 >

RuntimeWarning: divide by zero encountered in log错误解决

阙新觉
2023-12-01

问题描述

最近在学习《机器学习实战》这本书时,朴素贝叶斯那里遇到了这样的问题。

def train_native_bayes(train_matrix,train_category):
    num_train_docs=len(train_matrix)
    num_words=len(train_matrix[0])
    p=sum(train_category)/float(num_train_docs)
    p_0_num=zeros(num_words)
    p_1_num=zeros(num_words)
    p_0_denom=0.0
    p_1_denom=0.0
    for i in range(num_train_docs):
        if train_category[i]==1:
            p_1_num+=train_matrix[i]
            p_1_denom+=sum(train_matrix[i])
        else:
            p_0_num+=train_matrix[i]
            p_0_denom+=sum(train_matrix[i])
    p_1_vector=log(p_1_num/p_1_denom)
    p_0_vector=log(p_0_num/p_0_denom)
    return p_0_vector,p_1_vector,p

然后运行时出现了下面的问题:

F:\PycharmProject\bayes_practice_1.py:74: RuntimeWarning: divide by zero encountered in log
  p_1_vector=log(p_1_num/p_1_denom)
F:\PycharmProject\bayes_practice_1.py:75: RuntimeWarning: divide by zero encountered in log
  p_0_vector=log(p_0_num/p_0_denom)
F:\PycharmProject\bayes_practice_1.py:84: RuntimeWarning: invalid value encountered in multiply
  p_1 = sum(need_to_classify_vector * p_1_vector) + log(p_class)    #element-wise mult
F:\PycharmProject\bayes_practice_1.py:85: RuntimeWarning: invalid value encountered in multiply
  p_0 = sum(need_to_classify_vector * p_0_vector) + log(1.0 - p_class)

虽然不影响最终的结果,但是警告看起来让人不舒服。
我们排查原因,是存在数字太小的原因,溢出,计算过程中出现-inf,再做其他运算,结果还是-inf。
比如我们展示一下结果:

train_mat=[]
for i in dataset:
    train_mat.append(set_of_words_vector(my_vacab_set,i))
p_0_vector,p_1_vector,p=train_native_bayes(train_mat,class_vector)
print(p_0_vector)

结果如下:

[-3.17805383 -3.17805383 -3.17805383        -inf -3.17805383 -2.48490665
 -3.17805383 -3.17805383        -inf -3.17805383 -3.17805383 -3.17805383
        -inf        -inf        -inf        -inf -3.17805383        -inf
 -3.17805383 -3.17805383        -inf        -inf -3.17805383 -2.07944154
 -3.17805383 -3.17805383        -inf -3.17805383 -3.17805383        -inf
 -3.17805383 -3.17805383]

探索原因

当概率很小时,取对数后结果趋于负无穷大。

解决方法

我们改变浮点数的精度为1e-5

p_1_vector=log(p_1_num/p_1_denom+1e-5)
p_0_vector=log(p_0_num/p_0_denom+1e-5)

这样就不会再报错,结果也没有-inf了。

[ -3.17781386  -3.17781386  -3.17781386  -3.17781386  -3.17781386
  -3.17781386  -3.17781386  -3.17781386  -2.07936154  -3.17781386
 -11.51292546  -3.17781386 -11.51292546 -11.51292546  -3.17781386
  -3.17781386 -11.51292546  -3.17781386  -3.17781386 -11.51292546
 -11.51292546 -11.51292546 -11.51292546 -11.51292546  -3.17781386
  -3.17781386 -11.51292546  -2.48478666  -3.17781386  -3.17781386
 -11.51292546  -3.17781386]

 类似资料: